OPTIMIZING VANADIUM CONVERTER SLAG UTILIZATION: TARGETED ENRICHMENT AND STABILIZATION OF VANADIUM THROUGH NON-EQUILIBRIUM SOLIDIFICATION

  • Ya-Jun Wang North China University of Science and Technology
  • Xiao-Pei Zhang School of Metallurgy and Energy, North China University of Science and Technology, 063210 Tangshan, P. R. China
  • Jian-Bao Zhang School of Metallurgy and Energy, North China University of Science and Technology, 063210 Tangshan, P. R. China
  • Li-Jie Peng School of Metallurgy and Energy, North China University of Science and Technology, 063210 Tangshan, P. R. China
  • Jun-Guo Li School of Metallurgy and Energy, North China University of Science and Technology, 063210 Tangshan, P. R. China
Keywords: vanadium, converter slag, enrichment, stabilization, non-equilibrium solidification

Abstract

The objective of this research was to optimize the comprehensive utilization of vanadium converter slag through targeted enrichment and stabilization of heavy metal vanadium. Employing the non-equilibrium solidification theory and FactSage software, we investigated the potential of modifying vanadium converter slag. When the original slag failed to generate vanadium-rich spinel with usable V elements, introducing modifying agents Fe and Al proved effective. Fe facilitated the enrichment of Cr within spinel, while Al significantly promoted the V enrichment. Expanding on this, we systematically examined the influence of Fe2O3, Al2O3 and MgO contents on spinel phase precipitation during vanadium slag solidification. The addition of Al resulted in the precipitation of corundum, hematite, spinel, olivine and diopside phases. With an increase in the Fe2O3 content, the precipitation of FeV2O4 and MgV2O4 initially increased, peaking at 9.67 % before subsequently decreasing. Maintaining the Fe2O3 content within a range of 25–30 % proved optimal for enhancing vanadium precipitation and enrichment. In contrast, variations in the Al2O3 content had minor impacts on SP-V phase precipitation, with slight effects on FeV2O4 reaching 10.34 %. Furthermore, the incorporation of MgO facilitated the precipitation of MgV2O4 while concurrently suppressing the FeV2O4 precipitation. By judiciously controlling the MgO content at approximately 20 %, vanadium enrichment in the form of FeV2O4 and MgV2O4 spinel phases reached a remarkable 94.46 %.

References

1J. Wen, T. Jiang, M. Zhou, H. Gao, J. Liu, X. Xue, Roasting and leaching behaviors of vanadium and chromium in calcification roasting–acid leaching of high-chromium vanadium slag, Int. J. Miner. Metall. Mater. 25 (2018) 515–526. doi:10.1007/s12613-018-1598-3.
2Zhang S, Li G, Xiao R,Extraction of vanadium from low-vanadium grade magnetite concentrate pellets with sodium salt.Journal of Materials Research and Technology, 2021,doi:10.1016/j.jmrt.2021.11.039
3Xiang, J., Fundamental Study on the Optimization of Vanadium Extraction from LD Converter Slag by Calcification Based Process and the Comprehensive Utilization of Tailings. Doctoral dissertation, Chongqing University, 2018. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whLpCgh0R0Z-iDdIt-WSAdV5IJ_Uy2HKRAUnoLEKr_24EsMMESGimGJJcvdSst9a06LSQBl_WBMx3&uniplatform=NZKPT (accessed August 22, 2023).
4Tong, Z., Fan, J., Zeng, Q., Jia, Z., Lin, X. Research status and prospect of preparation of foam glass ceramics from metal tailings. Nonferrous Metals Science and Engineering, 11, 34–41. doi:10.13264/j.cnki.ysjskx.2020.02.005.
5Huo X, Zhang X, Ding Z. A clean approach for detoxification of industrial chromium-bearing stainless steel slag: Selective crystallization control and binary basicity effect. Journal of Hazardous Materials, 2023, 446: 130746. doi:10.1016/j.jhazmat.2023.130746
6Tong, Z., Jia, Z., Zeng, Q., Xu, C., Zeng, Q. Thermodynamics of the effects of slag compositions on the precipitation of chromium spinel in CaO-MgO-Al2O3-SiO2-Cr2O3-FeO-TiO2 slag system. Nonferrous Metals Science and Engineering, 11(2020), 1–10. doi:10.13264/j.cnki.ysjskx.2020.03.001.
7Ostrovski, O.I., Utochkin, Y.I., Pavlov, A.V., Akberdin, R.A. Viscosity of the CaO-CaF2 System Containing Chromium Oxide. Transactions of the Iron & Steel Institute of Japan, 34(1994), 773–775. doi:10.2355/isijinternational.34(1994).773.
8Li, Q., Gao, J., Zhang, Y., An, Z., Guo, Z. Viscosity measurement and structure analysis of Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slags. Metallurgical and Materials Transactions B, 48(2017), 346–356. doi:10.1007/s11663-016-0858-8.
9Xie, W., Phase structure, phase equilibria and thermodynamic properties in iron-vanadium oxides. Doctoral dissertation, University of Science and Technology Beijing, 2020. doi:10.26945/d.cnki.gbjku.2020.000135.
10Du, W., Fundamental Research of Thermodynamic Optimization of Fe-V-Si-O System and CO2 Used in Vanadium-Extraction Process. Doctoral dissertation, Chongqing University, 2019. doi:10.27670/d.cnki.gcqdu.2019.003208.
11R. Gilligan, The extraction of vanadium from titanomagnetites and other sources, Miner. Eng. (2020). doi: 10.1016/j.mineng.2019.106106
12Huang, D. Vanadium refining in steelmaking. Materiali in Tehnologije, 1(2000), 1.
13Su, L., Xu, J., Zuo, L. Thermodynamic calculation of precipitation behavior of chromium spinel in the CaO-SiO2-MgO-Al2O3-FeO-Cr2O3 slag system. Nonferrous Metals Science and Engineering, 14 (2023), 302–310. doi:10.13264/j.cnki.ysjskx.2023.03.002.
14Li, H.-Y., Fang, H.-X., Wang, K., Zhou, W., Yang, Z., Yan, X.-M., Ge, W.-S., Li, Q.-W., Xie, B. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching. Hydrometallurgy, 156(2015), 124–135. doi:10.1016/j.hydromet.2015.06.003.
15Li, X. Research on Spinels Growth Law and Calcification Roasting Mechanism of Vanadium Slag. Master's thesis, Chongqing University. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkWGEmc0QetxDh64Dt3veMp4z7CgwsLIOYBfPIc95qgv9Vrl1DS98-6QJ0Aqopjh5v&uniplatform=NZKPT (accessed August 22, 2023).
16Pan, C. Study on the Precipitation Behavior and Control of Titanium-containing Inclusions in 321 Stainless Steel. Doctoral dissertation, University of Science and Technology Beijing. (2021). doi:10.26945/d.cnki.gbjku.2021.000116.
17Tang, A., Huang, K., Zhao, J., Stanford. Electrochemistrical Performance of Spinel LiMn2O4 Cathode Material For Lithium Ion Battery at Elevate Temperature. Fine Chemical Intermediates, 32(2002), 35–37. doi: 10.19342/j.cnki.issn.1009-9212.2002.04.014
18Dong, Z. Fundamental study on co-extraction and separation of vanadium, titanium and chromium from vanadium slag. Doctoral dissertation, University of Science and Technology Beijing. (2022). doi:10.26945/d.cnki.gbjku.2022.000265.
19Howard, R.L., Richards, S.R., Welch, B.J., Moore, J.J. Vanadium distribution in melts intermediate to ferroalloy production from vanadiferous slag. Metallurgical and Materials Transactions B, 25(1994), 27–32. doi:10.1007/BF02663175.
20Wang, H., Li, G., Li, B., Zhang, X., Yan, Y. Effect of B2O3 on Melting Temperature of CaO-Based Ladle Refining Slag. Journal of Iron and Steel Research International, 17(2010), 18–22. doi:10.1016/S1006-706X(10)60177-X.
21Engström, F., Adolfsson, D., Yang, Q., Samuelsson, C., Björkman, B. Crystallization Behaviour of some Steelmaking Slags. Steel Research International, 81(2010), 362–371. doi:10.1002/srin.200900154.
22W. Li, X. Xue, Effect of cooling regime on phase transformation and chromium enrichment in stainless-steel slag, Ironmak. Steelmak. 46 (2019) 642–648. doi: 10.1080/03019233.2018.1436890.
23Fang, H.-X., Li, H.-Y., Li, X., Xie, B. Sodium Roasting Thermodynamics of Chromium-Containing Vanadium Slag and Its Application. In: N.R. Neelameggham, S. Alam, H. Oosterhof, A. Jha, S. Wang (Eds.), Rare Metal Technology 2014, John Wiley & Sons, Inc., Hoboken, NJ, USA, pp(2014). 189–195. doi:10.1002/9781118888551.ch34.
24Wang, N., Zou, Z., Zhang, Z., Xiao, Y., Yang, Y. Thermodynamics of Slag Formation in Multi-Component Oxide Systems in Thermal Processing of Incineration Bottom Ash - Equilibrium Phase Relation in CaO-SiO2-FeOx-MgO System. Advanced Materials Research, (2011).194-196, 2175–2178. doi:10.4028/www.scientific.net/AMR.194-196.2175.
25Yu, Y., Theory and Technology of Making High Speed Steel by Direct Alloying of Tungsten Molybdenum Vanadium Oxide Ore. China Tungsten Industry. (2006). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGWU200601004.htm (accessed August 22, 2023).
26Sun, D., Thermodynamic analysis on oxidations of Ti and V in hot metal containing vanadium. Master's thesis, Inner Mongolia University of Science and Technology. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkbl4wwVeJ9RmnJRGnwiiNVnQCP7uXdknqD57im6HEI4xxX8vLNFadw9XyQQh6HfQX&uniplatform=NZKPT (accessed August 22, 2023).
27Yu, Y., Basic Investigation on Effect of FeO on the Precipitation Behavior of Spinel in CaO-SiO2-MgO-Al2O3-Cr2O3 System, Wuhan University of Science and Technology, 2018. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whLpCgh0R0Z-iTEMuTidDzndci_h58Y6ouZU03Q2pHHLkMWf_GvaMZak5E7cJNagvnn20D1CHp67_&uniplatform=NZKPT (accessed August 22, 2023).
28Jeong, Y., Fan, M., Singh, S., Chuang, C.-L., Saha, B., Hans Van Leeuwen, J. Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents. Chemical Engineering and Processing - Process Intensification, 46(2007)., 1030–1039. doi:10.1016/j.cep.2007.05.004.
Published
2024-06-03
How to Cite
1.
WangY-J, ZhangX-P, ZhangJ-B, PengL-J, LiJ-G. OPTIMIZING VANADIUM CONVERTER SLAG UTILIZATION: TARGETED ENRICHMENT AND STABILIZATION OF VANADIUM THROUGH NON-EQUILIBRIUM SOLIDIFICATION. MatTech [Internet]. 2024Jun.3 [cited 2024Sep.7];58(3):339–348. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/984