EFFECT OF Sc ON THE HYDROGEN-STORAGE PERFORMANCE OF Mg2Ni: A FIRST-PRINCIPLES STUDY
Abstract
The effect of metal scandium (Sc) on the hydrogen-storage properties of the magnesium-nickel (Mg2Ni) alloy has been explored using the ultrasoft pseudopotential approach, rooted in the principles of Density Functional Theory (DFT). The binding energy, lattice constant, enthalpy of formation, standard enthalpy of reaction, charge density, density of states and bond order for the Mg2-xScxNi (x = 0, 0.25, 0.5, 1) alloys and their hydrides were calculated. Furthermore, the analysis of the atomic bonding and the structural stability of Mg2-xScxNi and hydrides were also facilitated. The results show that the preference site of the Sc atom in Mg2-xScxNi (x = 0, 0.25, 0.5, 1) alloys is Mg (6i) under the condition of a Sc doping concentration of 0.25. This causes a decrease in the stability of the Mg1.75Sc0.25Ni alloy. Moreover, the addition of Sc to Mg2-xScxNiH4 weakens the interaction of H-Ni and H-Mg, thereby facilitating the hydrogen-release reaction and effectively enhancing the hydrogen-release capability of Mg2-xScxNiH4.
References
2 X. L. Yang, X. H. Lu, J. Q. Zhang, Progress in improving hydrogen storage properties of Mg-based materials, Materials Today Advances, 19(2023), doi:10.1016/J.MTADV.2023.100387.
3 N. Cui, J. L. Luo, Electrochemical study of hydrogen diffusion behavior in Mg2Ni-TYPE hydrogen storage alloy electrodes, International Journal of Hydrogen Energy, 24(1999)1, 37-42, doi:10.1016/S0360-3199(98)00026-3.
4 S. Gao, S. Zhang, Y. C. Li, R. Hu, Z. Heng, X. C. Shi, P. P. Jin, J. L. Shui, The rare earth doped Mg2Ni (0 1 0) surface enhances hydrogen storage, Applied Surface Science,29(2023),614.
5 P. Giannozzi, S. Baroni , N. Bonini, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 21(2009)39, 395502, doi:10.1088/0953-8984/21/39/395502.
6 E. A. Murray, Evaluating and Tuning Atomic-Scale Interactions at Interfaces of Electrocatalytic and Electronic Materials through First Principles Calculations, The University of Wisconsin-Madison, 2020.
7 M. A. Nosir, L. Martin-Gondre, G. A. Bocan, Adsorption dynamics of molecular nitrogen at an Fe (111) surface, Physical Chemistry Chemical Physics 19(2017)10, 7370-7379, doi:10.1039/c6cp07174k.
8 Y. Zhou, M. Dang, L. Sun, First–principle studies on the electronic structural, thermodynamics and elastic properties of Mg17Al12 intermediate phase under high pressure, Materials Research Express, 6(2019)8, doi:10.1088/2053-1591/ab2420.
9 Z. Wu, L. Zhu, Z. Zhang, First principles study towards the influence of interstitial nitrogen on the hydrogen storage properties of the Mg2Ni (0 1 0) surface, International Journal of Hydrogen Energy, 42(2017)39, doi:10.1016/j.ijhydene.2017.08.047.
10 Y. J. Chen, X. H. Mo, Y. Huang, The role of magnesium on properties of La3-xMgxNi9 (x=0, 0.5, 1.0, 1.5, 2.0) hydrogen storage alloys from first-principles calculations, International Journal of Hydrogen Energy 47(2022)86, doi:10.1016/J.IJHYDENE.2022.08.242.
11 M. Meunier, A Molecular Modelling Study of Electron Trapping in Polythylene, Bangor University (United Kingdom), 2000.
12 M. V. Simicic, M. Zdujic, R. Dimitrijevic .Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying, Journal of Power Sources, 158(2006)1, 730-734, doi:10.1016/j.jpowsour.2005.09.030.
13 K. Ikeda, S. Orimo, A Züttel, Cobalt- and copper-substitution effects on thermal stabilities and hydriding properties of amorphous MgNi, Journal of Alloys & Compounds, 280(1998)1-2, 0-283, doi:10.1016/s0925-8388(98)00710-5.
14 C. P. Broedersz , R. P. Gremaud, B. P. Dam, Highly destabilized Mg-Ti-Ni-H system investigated by density functional theory and hydrogenography, physical review b, 77(2008)77, 4204, doi:10.1103/PhysRevB.77.024204.
15 Z.W. Huang, Y.H. Zhao, H. Hou, P.D. Han, Electronic structural, elastic properties and thermodynamics of Mg 17 Al 12 , Mg 2 Si and Al 2 Y phases from first-principles calculations, Physica B: Physics of Condensed Matter, 407(2012)7, doi:10.1016/j.physb.2011.12.132..
16 Z. Dehouche, R. Djaozandry, J. Goyette, Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg 2 Ni alloy, Journal of Alloys & Compounds, 288(1999)1-2, 269-276, doi:10.1016/S0925-8388(99)00085-7.
17 Y. H. Wu, J. S. Chen, J. Y. Ji , Structural stability, elasticity, thermodynamics, and electronic structures of L12-type Ni3X (X=Al, Ti, V, Nb) phases under external pressure condition, Journal of Molecular Modeling, 28(2022)1, 26-, doi:10.1007/s00894-021-05014-6.
18 Olaf Hübner, H. J. Himmel, MRCI investigation of different isomers of Ni2O2H2+, Physical Chemistry Chemical Physics Pccp, 13(2011)7, 2963-2971, doi:10.1039/C0CP01170C.
19 P. V. Jasen, E. A. González,G. Brizuela, A theoretical study of the electronic structure and bonding of the monoclinic phase of Mg 2 NiH 4. International Journal of Hydrogen Energy. 32(2007)18, doi:10.1016/j.ijhydene.2007.08.011.
20 Y. Zeng , K. Fan , X. Li , First-principles studies of the structures and properties of Al- and Ag-substituted Mg2Ni alloys and their hydrides, International Journal of Hydrogen Energy, 35(2010)19, 10349-10358, doi:10.1016/j.ijhydene.2010.07.131.
21 X. S. Liu, S. P. Wu, X. L. Cai, L Zhou, Hydrogen storage behaviour of Cr- and Mn-doped Mg2Ni alloys fabricated via high-energy ball milling. International Journal of Hydrogen Energy, 48(2023)45, doi:10.1016/J.IJHYDENE.2023.01.180.
22 R. J. Zhang, Y. M. Wang, D. M. Chen, First-principles calculations of LaNi4Al–H solid solution and hydrides, Acta Mater, 54 (2006)2, 465, doi:10.1016/j.ijhydene.2007.08.011.
23 X. H. Mo, W. Q. Jiang,S. L. Cao, First-principles study on the dehydrogenation characteristics of LiBH 4 modified by Ti, Results in Physics, 7(2017), 3236-3242, doi:10.1016/j.rinp.2017.08.053.