CARBURIZING-QUENCHING HARDNESS MODEL ANALYSIS AND COMPARISON

  • Wang Xin Mechanical Engineering College, Henan University of Engineering, Zhengzhou, PR China
Keywords: carburizing-quenching, Jominy distance, carbon content, hardness

Abstract

Unlike the conventional calculation models of the hardness, a carburizing-quenching hardness model considers the influence of the carbon content on the phase transformation and hardness. The volume fraction model (VFM) and Jominy curve model (JCM) for calculating carburizing-quenching hardness of 20CrNi2Mo steel were built in this study, and the models were used to calculate the hardness of Jominy and gear samples. The hardness results of both models were compared, and the simulation results were verified with the corresponding test results. The results show that the hardness values obtained with both models have a certain calculation accuracy. But due to considering the influence of residual austenite (RA) on the hardness, the simulation accuracy of the VFM was better for the low Jominy distance and the hardened case, while the simulation accuracy of the JCM was better for the large Jominy distance and the low-carbon martensite region; the calculation of the latter is more convenient and its accumulated error is small.

References

1 G. M. Chen, Review on carburizing and hardening technology of gears in China, Heat Treatment of Metals, 33(2008), 25-33, DOI:10.13251/j.issn.0254-6051.2008.01.007
2 J. Fluhrer, DEFORM 2D-V9.0 and 3D-V6.0 User’s Manual, Scientific Forming Technology Co., Columbus, 2005, 102
3 Doane D. V., Kirkalady J. S., Hardenability concepts with applications to steel, Metallurgical Society of AIME, New York, 1978, 213
4 Woodard P. R., Chandraseker S., Yang H. T., Analysis of temperature and microstructure in the quenching of steel cylinders, Metallurgical and Materials Transactions B, 30(1999), 815-822, DOI:10.1007/s11663-999-0043-4
5 J. Yuan, J. Kang, Y. Rong, R. Sisson, FEM modeling of induction hardening processes in steel, Journal of Materials Engineering and Performance, 12(2003)5, 589-596, DOI:10.1361/ 105994903100277111
6 X. Zhang, J. Y. Tang, An optimal hardness model for carburizing-quenching of low carbon alloy steel, J. Cent. South Univ., 24(2017)1, 9-16. DOI: 10.1007/s11771-017-3403-2
7 X. Wang, B.K. Li, A carburizing-quenching Jominy curve hardness model, Materials Letters, 265(2020), 127422, DOI:10.1016/j.matlet.2020.127422
8 D. H. Ko, D. C. Ko, H. J. Lim, B. M. Kim, Application of QFA coupled with CFD analysis to predict the hardness of T6 heat treated Al6061 cylinder, Journal of Mechanical Science and Technology, 27(2013)9, 2839-2844. DOI:10.1007/s12206-013-0732-4
9 Wang A. X., Gao J. Z., Gu M., Heat treatment of new type high alloy carburizing gear steel 17CrNiMo6, Heat Treatment of Metals, 35(2010)10, 82-86. DOI:10.13251/j.issn.0254-6051.2010.10.021
10 X. Zhang, J. Y. Tang, Key technology in carburizing process simulation for 17CrNiMo6 steel annular gear, Heat Treatment of Metals, 40(2015)3, 185-189, DOI:10.13251/j.issn.0254-6051.2015.03.042
11 D. W. Kim, Y. G. Cho, H. H. Cho, S. H. Kim, W. B. Lee, M. G. Lee, H. N. Han, A numerical model for vacuum carburization of an automotive gear ring, Metals & Materials International, 17(2011)6, 885-890, DOI:10.1007/s12540-011-6004-x
12 A. Sugianto, M. Narazaki, M. Kogawara, A. Shirayori, S. Y. Kim, S. Kubota, Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear, Journal of Materials Processing Tech., 209(2009)7, 3597-3609, DOI:10.1016/ j.jmatprotec.2008.08.017
13 Y. Liu, S. W. Qin, Q. G. Hao, N. L. Chen, X.W. Zuo, Y. H. Rong, Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders, Metallurgical & Materials Transactions A, 48(2017)3, 1402-1413, DOI: 10.1007/s11661-016-3916-6
14 S. J. Lee, K. S. Park, Prediction of martensite start temperature in alloy steels with different grain sizes, Metallurgical & Materials Transactions A, 44(2013)8, 3423-3427. DOI: 10.1007/s11661-013-1798-4
15 B. B.Yu, Computer designer of steel, Metallurgical industry Press, Beijing, 1996.
16 M. Gu, B. K. Li, A. X. Wang, S. F. Zhao, H. X. Xu, Q. Y. Zhu, Study on the heat treatment distortion characteristics of the typical carburizing and hardening gear steel, 9th national heat treatment conference, Dalian, China, 2007,142-148.
17 A. Sugianto, M. Narazaki, M. Kogawara, Distortion analysis of axial contraction of carburized-quenched helical gear, Journal of Materials Engineering and Performance, 19(2010)2, 194-206, DOI:10.1007/s11665-009-9476-9
Published
2024-02-05
How to Cite
1.
Xin W. CARBURIZING-QUENCHING HARDNESS MODEL ANALYSIS AND COMPARISON. MatTech [Internet]. 2024Feb.5 [cited 2024Apr.24];58(1):9–16. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/978