RESEARCH STATUS AND PROSPECTS FOR TIG-MIG HYBRID-ARC-WELDING TECHNOLOGY

  • Yinghao Li School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
  • Rang Zong School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
  • Yujiao Zhang School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
  • Jingzhuo Yao School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
Keywords: tungsten insert-gas welding; metal inert-gas welding; welding parameters; numerical simulation

Abstract

TIG-MIG hybrid welding integrates the merits of tungsten insert-gas welding (TIG) and metal inert-gas welding (MIG), and achieves a new material-joining process with high quality, high efficiency and low cost. However, TIG-MIG hybrid welding also had some shortcomings, such as a complex process, unstable arc, large heat input, limiting its application. To further improve and promote TIG-MIG hybrid welding, numerous universities and research institutes have put forward a series of improvement programs that achieve relatively good results. In this study TIG-MIG hybrid welding is discussed in three aspects: the welding-process improvement, welding-parameters optimization and numerical simulation of the welding process. It was found that the stability of the hybrid arc welding process and the quality of the weld bead can be improved by improving the current polarity, wire type and arc swing. The TIG current, the distance between the wire and tungsten, and the heat input had an important impact on the weld quality and the formation of defects. A numerical simulation of the welding process analyzed the effects of torch angle, the distance between the wire and tungsten, the welding speed and the temperature fields on the arc morphology, molten-pool behavior, and droplet transfer. According to the above analysis, it summarized the current research status of TIG-MIG hybrid welding, and then proposed future research directions based on the existing shortcomings and deficiencies.

References

1 S.Y. Lin, Present situation of welding production and development trend of welding technology in China. Ship Engineering, S1 (2005):15-24. DOI:10.3969/j.issn.1000- 6982.2005.z1.004
2 C. S. Wu, J. Cao, Y. B. Li, Preface, Journal of Mechanical Engineering, 56(06) (2020):1-3.
3 O. Annette, G. Brien, Welding processes, American Welding Society, 2012.
4 N. Able, F. P. fefferkorn, Laser-assisted friction stir lap welding of aluminum, Asme Summer Heat Transfer Conference Collocated with the Asme Pacific Rim Technical Conference & Exhibition on Integration & Packaging of Mems, (2005), DOI:10.1115/HT2005-72829.
5 W. M. Steen, M. Eboo, Arc augmented laser welding, Metal Construction, 11(7) (1979):332-333, 335.
6 W. M. Steen, Arc augmented laser processing of materials, Journal of Applied Physics, 51(11) (1980):5636-5641. DOI:10.1063/1.327560
7 S. Z. Yu, Alternating TIG-MIG welding arc phenomena and their mutual effects, Welding Letters, (02) (1985):48-49+47, DOI: 10.13846/j.cnki.cn12-1070/tg.1985.02.013.
8 S. Shi, F. G. Liu, C. P. Huang, Research progress of laser hybrid heat source welding technology, Materials Guide, 36(11) (2022):170-177.
9 S.Y. Lin, Q. Guan, Research on the status and development strategy of welding production in China's manufacturing industry, Mechanical workers (thermal processing), 10 (2004):16-20.
10 B. Y. Zhang, X. Li, Y. J. Zhang, Research status of arc additive manufacturing of aluminum alloy, Surface Technology:1-24(2023-03-23). http://kns.cnki.net/kcms/detail/50.1083.TG.20230202.1320.015.html
11 Q. Y. Liu, D. Wu, Q. Z. Wang, Research status of stability in dynamic process of laser-arc hybrid welding based on droplet transfer behavior: a review, Coatings, 13 (2023): 1, DOI10.3390/coatings13010205
12 J. Chen, R. Zong, C. S. Wu, P. G. Kumar, Q. X. Hu, Influence of low current auxiliary TIG arc on high speed TIG-MIG hybrid welding, Journal of Materials Processing Tech, (2016), 243, DOI:10.1016/j.jmatprotec.2016.12.012
13 H. G. Gao, Study on arc physical characteristics and welding technology of (AC) TIG-MIG hybrid welding, Shandong University, (2016), https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1016164990.nh
14 T. Zhang, P.F. Huang, S. J. Bai, Z. Y. Yang, Research of an alternating double arc hybrid welding equipment and its technology, Electric welding machine, 46 (01) (2016):45-48.
15 K. Li, Research on alternating double-arc welding mechanism, Beijing Institute of Technology, (2020), DOI: 10.26935/d.cnki.gbjgu.2020.000591.
16 Y. Y. Tang, Z. M. Zhu, P. P. Fu, T. Y. Zhang, Effects of electrode polarity and shielding gas type on arc ignition of TIG arc assisted MIG welding, Journal of Tsinghua University: Natural Science Edition, 61(1) (2021):6, DOI:10.16511/j.cnki.qhdxxb.2020.22.023
17 Y. Y. Tang, Z. M. Zhu, Z. Y. Yang, TIG arc-induced non-contact MIG arc ignition, Journal of Materials Processing Technology, (2018):45-53, DOI: 10.1016/j.jmatprotec.2018.02.010.
18 S. B. Wang, Research on arc behavior and droplet transfer of TIG-MIG hybrid arc welding for aluminum alloy, Harbin Institute of Technology, (2016).
19 Y, Liang, J. Q. Shen, S. S. Hu, H. C. Wang, J. PANG, Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminum alloy joints by TIG–CMT hybrid welding, Journal of Materials Processing Tech, (2017),255. DOI:10.1016/j.jmatprotec.2017.12.006
20 Z. Dong, Study on arc behavior and droplet transfer with cable-type welding wire in TIG-MIG hybrid welding, Jiangsu University of Science and Technology, (2018).
21 C. Zhang, Q. Hu, X. Wang, Z. Dong, D. Du, Influence of voltage and current on the arc shape in cable-type wire TIG-MIG hybrid welding, Mater. Tehnol., 2 (2022):56. DOI: 10.17222/mit.2021.340
22 Y. Zhu, Z. Wang, R. Liu, L. Liu, Study on arc behavior and droplet transfer in twin-electrode TIG-MIG indirect arc welding, The International Journal of Advanced Manufacturing Technology, 120(9) (2022):6821-6831. DOI:10.1007/S00170-022-09131-1
23 J. Huang,H. Chen,J. He,S. Yu,D. Fan, Narrow gap applications of swing TIG-MIG hybrid weldings, Journal of Materials Processing Technology, (2019), 271. DOI:10.1016/j.jmatprotec.2019.04.043
24 J. Huang, W. H. Xu, J. Liu, Y. Y. Yi, Research of weld forming of swing TIG-MIG hybrid heat source surfacing, Thermal Processing Technology, 5(2020):5. DOI:10.14158/j.cnki.1001-3814.20192512
25 Y. Shi, X. Z. Sun, Influence of welding parameters on welding quality and points to note. Science and Technology Innovation and Application, 9 (2016), 1.
26 H. Li, Study on behavior of dissimilar steel TIG-MIG hybrid narrow gap welding by double layer shielding gas, Taiyuan University of Technology, (2017).
27 S. Kanemaru, T. Sasaki, T. Sato, H. Mishima, S. Tashiro, M. Tanaka, Study for TIG-MIG hybrid welding process, Quarterly journal of the Japan welding society, 31 (2013) 4. DOI:10.2207/qjjws.31.18s
28 J. Chen, J. H. Wei, Q. Zhou, C. S. Wu, Suppression mechanism of low current auxiliary TIG arc on high speed TIG-MIG hybrid welding and process optimization, Journal of Mechanical Engineering, 2 (2018):7. DOI:10.3901/JME.2018.02.055
29 J. Chen, R. Zong, C. S. Wu, M. A. Chen, Influence of arcs interaction on TIG-MIG hybrid welding process, Journal of Mechanical Engineering, 52(06) (2016):59-64. DOI:10.3901/JME.2016.06.059
30 S. Kanemaru, T. Sasaki, T. Sato, H. Mishima, S. Tashiro, M. Tanaka, Study for TIG–MIG hybrid welding process, Welding in the World, 58 (2014) 1. DOI:10.1007/s40194-013-0090-y
31 R. Zong, J. Chen, C. S. WU, A comparison of TIG-MIG hybrid welding with conventional MIG welding in the behaviors of arc, droplet and weld pool, Journal of Materials Processing Technology, (2019). DOI:10.1016/j.jmatprotec.2019.03.003
32 R. Roslan, S. Mamat, P. T. Teo, F. Mohamad, S. Gudur, Y. Toshifumi, S. Tashiro, M. Tanaka, Observation of arc behaviour in TIG/MIG hybrid welding process, IOP Conference Series: Earth and Environmental Science, 596(1) (2020):012025 (7pp). DOI:10.1088/1755-1315/596/1/012025
33 D. S. Chen, H. Wang, M. A. Chen, A. G. WANG, Effect of polarity ratio on the arc stability and weld formation of high speed square wave AC TIG-MIG hybrid welding, Welding machine, 52(7) (2022):39- 44.
34 E. O. Ogundimu, E. T. Akinlabi, M. F. Erinosho, An Experimental study on the effect of heat input on the weld efficiency of TIG-MIG hybrid welding of type 304 austenitic stainless steel, Journal of Physics: Conference Series, (2019),1378(2). DOI 10.1088/1742-6596/1378/2/022075
35 C. S. Abima, S. A. Akinlabi, N. Madushele, O. S. Akinlabi, E. Titilayo, Multi-objective optimization of process parameters in TIG-MIG welded AISI 1008 steel for improved structural integrity, The International Journal of Advanced Manufacturing Technology, (11/12) (2022):118. DOI:10.1007/s00170-021-08181-1
36 Y. G. WU, W. S. LI, H. J. ZOU, L. Z. LING, Research status of the development of numerical welding simulation technology, Journal of Welding, 03 (2002):89-92+0. DOI:10.3321/j.issn:0253-360X.2002.03.024
37 C. S. Wu, X. M. Meng, J. Chen, G. L. Qin, Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding, Journal of Mechanical Engineering, 54(02) (2018):1-15. DOI:10.3901/JME.2018.02.001
38 S. Kanemaru,T. Sasaki,T. Sato,H. Mishima,M. Tanaka, Study for the arc phenomena of TIG-MIG hybrid welding process by 3D numerical analysis model, Quarterly Journal of the Japan Welding Society, 30(4) (2012) 323-330. DOI:10.2207/qjjws.30.323
39 J. Chen, C.S. Wu, M.A. Chen, Improvement of welding heat source models for TIG-MIG hybrid welding process, Journal of Manufacturing Processes, (2014),16(4). DOI:10.1016/j.jmapro.2014.06.002
40 J. Chen,Z. Han,L. Wang,C. WU, Influence of arc interactions on heat and mass transfer during a two-arc hybrid welding, International Journal of Heat and Mass Transfer, 148 (2019):119058. DOI:10.1016/j.ijheatmasstransfer.2019.119058
41 J. X. Lou, X. Gong, N. N. Zhang, J. Zhang,D. Y. Li,Analysis and computational simulation of TIG-MIG hybrid welding arc, Welding Technology, 3 (2015):5. DOI:CNKI: SUN: HSJJ.0.2015-03-004
42 S. S. Cui, Numerical simulation of arc-droplet behavior in TIG-MIG hybrid welding, Shandong University, (2020). DOI: 10.27272/d.cnki.gshdu.2020.001907.
43 Y. Han,J. Chen,H. J. Ma,X. Y. Zhao,A. wierczynska, Numerical simulation of arc and droplet behaviors in TIG-MIG hybrid welding, Materials, 20, 10 (2020):4253. DOI:10.3390/ma13204520
44 X. Y. Zhao, Numerical simulation of arc-droplet-pool behavior in TIG-MIG hybrid welding, Shandong University, (2022). DOI: 10.27272/d.cnki.gshdu.2022.001385.
45 X. Wu,X. Zhao,J. Chen,Z. Zhang,C. Wu, Simulation of the influence of welding parameters on weld pool behavior during a TIG-MIG hybrid welding process, Journal of Manufacturing Processes, (2022), 79. DOI: 10.1016/J.JMAPRO.2022.05.007.
46 C. S. Abima, N. Madushele, F. M. Mwema, S. A. Akinlabi, Experimental and finite element simulation for thermal distribution in TIG, MIG and TIG-MIG hybrid welds, (2023). DOI:10.1007/s12008-022-01173-9
Published
2024-06-03
How to Cite
1.
Li Y, Zong R, Zhang Y, Yao J. RESEARCH STATUS AND PROSPECTS FOR TIG-MIG HYBRID-ARC-WELDING TECHNOLOGY. MatTech [Internet]. 2024Jun.3 [cited 2024Sep.7];58(3):387–396. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/974