PROPERTIES OF THE SIMULATED COARSE-GRAINED MICROSTRUCTURE OF QUENCHED AND TEMPERED HIGH-STRENGTH STEEL

  • Roman Celin Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
  • Fevzi Kafexhiu Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
  • Grega Klančnik RCJ d.o.o., Cesta Franceta Prešerna 61, 4270 Jesenice, Slovenia
  • Jaka Burja Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
Keywords: microstructure, coarse-grained, continuous cooling, hardness

Abstract

Quenched and tempered high-strength steels have a favorable strength-to-weight ratio. These steels are usually welded with the use of standard procedures. Due to the heat input during welding, steels undergo changes in the heat-affected zone and as a result an unfavorable microstructure and mechanical properties can occur. The coarse-grained heat-affected-zone microstructure was studied with the use of simulated thermal cycles. They were applied to the experimental quenched and tempered steel. The steel samples were heated to a peak temperature of 1350 °C and then cooled with different rates. A microstructure examination, dilatometry analysis and hardness measurements of the steel samples were performed. The transformation start and finish temperatures were determined using the dilatation vs. temperature data analysis. The investigation was performed to determine the appropriate cooling time t8/5 interval for further investigation of the experimental steel.

References

1 J. Bernetič, B. Kosec, G. Kosec, Z. Burzić, B. Podlipec, A. Nagode, B. Karpe, S. Kanalec, F. Vodopivec, L. Kosec, Phenomena in penetrating piercing bullets in armored steel plate, Metalurgija, 55 (2016) 1, 95–98
2 O. Slyvinskyy, Y. Chvertko, S. Bisyk, Effect of welding heat input on heat-affected zone softening in quenched and tempered armor steels, High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 23 (2019) 3, 239–253, doi:10.1615/HighTempMatProc.2019031690
3 EN 10025-6:2004+A1 Hot rolled products of structural steels – Part 6: Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition
4 M. Lomozik, E. Turyk, Mechanical Properties of Welded Joints in Steel S1100QL after Multiple Repair Welding, Biuletyn Instytutu Spawalnictwa, (2018) 3, 7–15, doi:10.17729/ebis.2018.3/1
5 M. Kowalski, T. Łagoda, F. Żok, V. Chmelko, Fatigue life of butt weldments made of S1100QL steel, Journal of Machine Construction and Maintenance, 113 (2019) 2, 7–13
6 P. Haslberger, S. Holly, W. Ernst, R. Schnitzer, Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa, J Mater Sci. 53 (2018) 9, 6968–6979, doi:10.1007/s10853-018-2042-9
7 M. Dunđer, I. Samardžić, A. Æorić, G. Salopek, Effects of real welding parameters of high-strength S1100QL steel on hardness and impact energy properties, Metalurgija, 57 (2018) 4, 242–244
8 J. Górka, D. Janicki, M. Fidali, W. Jamrozik, Thermographic assessment of the HAZ properties and structure of thermos-mechanically treated steel, International Journal of Thermophysics, 38 (2017) 12, doi:10.1007/s10765-017-2320-9
9 R. P. S. Sisodia, M. Gáspár, Physical simulation-based characterization of HAZ properties in steels. Part 1. High-strength steels and their hardness profiling, Strength of Materials, 51 (2019) 3, 490–499, doi:10.1007/s11223-019-00094-5
10 M. S. Węglowski, M. Zeman, M. Łomozik, Physical Simulation of Weldability of Weldox 1300 Steel, Materials Science Forum, 762 (2013), 551–555. doi:10.4028/www.scientific.net/MSF.762.551
11 R. Celin, J. Burja, G. Kosec, A comparison of as-welded and simulated heat affected zone (HAZ) microstructures, Materials and technology, 50 (2016) 3, 455–460, doi:10.17222/mit.2016.006
12 EN 1011-2, Welding – Recommendations for welding of metallic materials – Part 2: Arc welding of ferritic steels
13 T. Schaupp, W. Ernst, H. Spindler, T. Kannengiesser, Hydrogen-assisted cracking of GMA welded 960 MPa grade high-strength steels, International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene. 2020.05.077
14 H. K. D. H. Bhadeshia, R.W. K. Honeycombe. Steels – Micro¬struc¬ture and Properties, 3th ed., Butterworth-Heinemann, Oxford 2006, 299
15 S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia, 51 (2003) 6, 1789–1799, doi:10.1016/S1359-¬6454(02) 00577-3
16 F. Zhen, K. Zhang, Z. Guo, J. Qu, Effect of martensite structure on mechanical properties of an 1100 MPa grade ultra-high strength steel, Journal of iron and steel research international, 22 (2015) 7, 645–651, doi:10.1016/S1006-706X(15)30052-2
Published
2021-03-16
How to Cite
1.
Celin R, Kafexhiu F, Klančnik G, Burja J. PROPERTIES OF THE SIMULATED COARSE-GRAINED MICROSTRUCTURE OF QUENCHED AND TEMPERED HIGH-STRENGTH STEEL. MatTech [Internet]. 2021Mar.16 [cited 2025Jan.19];55(1):115-20. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/97