NOVEL MAGNETIC ALGINATE/HYDROXYAPATITE COMPOSITE WITH HIGH-EFFICIENCY CADMIUM-ADSORPTION PERFORMANCE

  • Xiao Xiao Sichuan Institute of Product Quality Supervision, Inspection and Testing, Chengdu 610100, China
  • Jiabei Zhou School of Chemical Engineering, Sichuan University, Chengdu 610064, China
  • Dali Zhou School of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
  • Liang Li Sichuan Institute of Product Quality Supervision, Inspection and Testing, Chengdu 610100, China
  • Yingjiang Wu Sichuan Institute of Product Quality Supervision, Inspection and Testing, Chengdu 610100, China
  • Xiang Zhou Sichuan Institute of Product Quality Supervision, Inspection and Testing, Chengdu 610100, China
  • Lang Du Sichuan Institute of Product Quality Supervision, Inspection and Testing, Chengdu 610100, China
  • Honggen Chen Sichuan Institute of Product Quality Supervision, Inspection and Testing, Chengdu 610100, China
Keywords: magnetic alginate/hydroxyapatite composite, Cd(II), water-dispersible adsorbent, magnetic separation

Abstract

Heavy-metal pollution (such as Cd(II)) is regarded as a serious environmental problem, posing a great threat to human beings. In this research, a novel water-dispersible magnetic alginate/hydroxyapatite composite with high-efficiency Cd(II) adsorption performance was successfully synthesized by a facile wet-chemical method. The magnetic separation experiment and magnetic property analysis indicate that a magnetic alginate/hydroxyapatite composite can be effectively separated under a magnetic field. The zeta-potential result and dispersity experiment indicate that the lowest zeta-potential is –39.4 mV at pH = 5, and the obtained sample dispersed well in a Cd(II) solution after 120 min. The maximum adsorption capacity of a sample on Cd(II) is 135.3 mg g–1 at pH = 5, and the adsorption of Cd(II) reached equilibrium in 10 min. The adsorption data could be fitted well using the Langmuir model, and the adsorption kinetic follows a pseudo-second-order kinetic model.

References

1 L. Wang, H. Gao, M. Wang, J. Xue, Remediation of petroleum-contaminated soil by ball milling and reuse as heavy metal adsorbent, J. Hazard. Mater., 434 (2022) 15, 127305, doi:10.1016/j.jhazmat. 2021.127305

2 C. Y. Gao, C. H. Liang, Y. Yin, L. Y. Du, Thermal activation of serpentine for adsorption of cadmium, J. Hazard. Mater., 329 (2017) 5, 222–229, doi:10.1016/j.jhazmat.2017.01.042

3 T. Kikuchi, M. Okazaki, S. D. Kimura, T. Motobayashi, J. Baasansuren, T. Hattori, T. Abe, Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains: II: Suppression of cadmium uptake and accumulation into rice grains due to application of magnesium oxide materials, J. Hazard. Mater., 154 (2008) 1–3, 294–299, doi:10.1016/j.jhazmat.2007. 10.025

4 H. Baker, F. Khalil, A study of complexation thermodynamic of humic acid with cadmium (II) and zinc (II) by Schubert’s ion-exchange method, Anal. Chim. Acta., 542 (2005) 5–6, 240–248, doi:10.1016/j.wear.2009.12.005

5 J. Oliva, J. D. Pablo, J. Cortina, J. Gama, G. Ayora, Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: Column experiments194, J. Hazard. Mater., 194 (2011) 30, 312–323, doi:10.1016/j.jhazmat.2011.07.104

6 M. Soylak, U. Divrikli, S. Saracoglu, L. Elci, Membrane filtration-atomic absorption spectrometry combination for copper, cobalt, cadmium, lead and chromium in environmental samples, Environ. Monit. Assess, 127 (2007), 169–176, doi:10.1007/s10661-¬006-¬9271-0

7 A. Adg, B. Kpr, C. Vb, A. Hs, Recent trends in the application of modified starch in the adsorption of heavy metals from water: A review, Carbohyd. Polym., 269 (2021) 1, 117763, doi:10.1016/ j.carbpol.2021.117763

8 X. Liang, Y. Zang, Y. Xu, X. Tan, W. Hou, L. Wang, Y. Sun, Sorption of metal cations on layered double hydroxides, Colloid. Surface. A, 433 (2013) 2, 122–131, doi:10.1016/j.colsurfa.2013.05.006

9 S. Guo, P. Jiao, Z. Dan, N. Duan, G. Chen, J. Zhang, Preparation of L-arginine modified magnetic adsorbent by one-step method for removal of Zn(II) and Cd(II) from aqueous solution, Chem. Eng. J., 317 (2017) 1, 999–1011, doi:10.1016/j.cej.2017.02.136

10 A. Shahbazi, H. Younesi, A. Badiei, Functionalized SBA-15 mesoporous silica bymelamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column, Chem. Eng. J. 168 (2011) 2, 505–518, doi:10.1016/j.cej.2010.11.053

11 Y. Feng, J. L. Gong, G. M. Zeng, Q. Y. Niu, H. Y. Zhang, C. G. Niu, J. H. Deng, M.Yan, Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J., 162 (2010) 2, 487–494, doi:10.1016/j.cej.2010. 05.049

12 W. Xu, J. Wang, L. Wang, G. Sheng, J. Liu, H. Yu, X. J. Huang, Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: Role of surface- and structure-dependent properties, J. Hazard. Mater., 260 (2013) 5, 498–507, doi:10.1016/ j.jhazmat.2017.01.042

13 F. Y. Wang, W. Hui, W. M. Jian, Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent–Bamboo charcoal, J. Hazard. Mater. 177 (2010) 1–3, 300–306, doi:10.1016/ j.jhazmat.2009.12.032

14 M. Dharsana, J. Prakash Arul Jose, Adsorption of lead from contaminated water using biosorbent, Mater. Tehnol., 56 (2022) 2, 171–177, doi:10.17222/mit.2021.352

15 M. Yang, L. Lin, B. Wang, L. Zhang, Y. Jiang, M. Zhao, J. Zeng, H. Chen, Y. Zhang, A facile yet versatile method for adsorption and relayed fluorescent detection of heavy metal ions, J. Enviton. Chem. Eng., 9 (2021) 4, 105737, doi:10.1016/j.jece.2021.105737

16 R. Zhu, R. Yu, J. Yao, D. Mao, C. Xing, D. Wang, Removal of Cd2+ from aqueous solutions by hydroxyapatite, Catal. Today., 139 (2008) 1–2, 94–99, doi:10.1016/j.cattod.2008.08.011

17 X. H. Zhu, J. Li, J. H. Luo, J. Yang, D. Zheng, Removal of cadmium(II) from aqueous solution by a new adsorbent of fluor-¬hydroxyapatite composites, J. Taiwan. Inst. Chem. E., 70 (2017), 200–208, doi:10.1016/j.jtice.2016.10.049

18 X. Xiao, L. Yang, D. Zhou, J. Zhou, Y. Tian, C. Song, C. Liu, Magnetic -Fe2O3/Fe-doped hydroxyapatite nanostructures as high-efficiency cadmium adsorbents, Colloid. Surface. A, 555 (2018), 548–557, doi:10.1016/j.colsurfa.2018.07.036

19 J. Y. Tseng, C. Y. Chang, Y. H. Chen, C. F. Chang, P. C. Chiang, Synthesis of micro-size magnetic polymer adsorbent and its application for the removal of Cu(II) ion Colloid. Surface. A, 295 (2007) 1–3, 209–216, doi:10.1016/j.colsurfa.2006.09.001

20 H. Ma, S. Pu, Y. Hou, R. Zhu, A. Zinchenko, W. Chu, A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification, Chem. Eng. J., 345 (2018) 1, 556–565, doi:10.1016/j.cej.2018.03.115

21 V. Zheltova, A. Vlasova, N. Bobrysheva, I. Abdullin, O. Osmo¬lovskaya, M. Voznesenskiy, O. Osmolovskaya, Fe3O4ŽHAp core–shell nanoparticles as MRI contrast agent: Synthesis, characterization and theoretical and experimental study of shell impact on magnetic properties, Appl. Surf. Sci., 531 (2020) 30, 147352, doi:10.1016/j.apsusc.2020.147352

22 S. H. Hosseini, A. Moghimi, M. Moloudi, Magnetic, conductive, and microwave absorption properties of polythiophene nanofibers layered on MnFe2O4/Fe3O4 core–shell structures, Mat. Sci. Semicon. Proc., 24 (2014), 272–277, doi:10.1016/j.mssp.2014.02.046

23 J. Brownson, M. I. Tejedor-Tejedor, M. A. Anderson, Photoreactive anatase consolidation characterized by ftir spectroscopy, Chem. Mater., 18 (2005) 5, 6304–6310, doi:10.1016/j.jhazmat.2017.01.042

24 J. He, K. Zhang, S. Wu, X. Cai, K. Chen, Y. Li, B. Sun, Y. Jia, F. Meng, Z. Jin, L. Kong, J. Liu, Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water, J. Hazard. Mater., 303 (2016) 13, 119–130, doi:10.1016/j.jhazmat.2015.10.028

25 L. Chen, K. S. Zhang, J. Y. He, W. H. Xu, X. J. Huang, J. H. Liu, Enhanced fluoride removal from water by sulfate-doped hydroxyapatite hierarchical hollow microspheres, Chem. Eng. J., 285 (2016) 5, 616–624, doi:10.1016/j.jhazmat.2017.01.042

26 G. Larosa, M. Salerno, J. S. L. Lima, R. M. Meri, M. F. D. Silva, L. B. D. Garvalho, A. Converti, Characterisation of bare and tannase-¬loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses, Int. J. Biol. Macromol., 115 (2018), 900–906, doi:10.1016/j.ijbiomac.2018.04.138

27 S. Liang, Y. Zhou, K. Kang, Y. Zhang, Z. Cai, J. Pan, Synthesis and characterization of porous TiO2-NS/Pt/GO aerogel: A novel three-dimensional composite with enhanced visible-light photoactivity in degradation of chlortetracycline, J. Photoch. Photobio. A., 346 (2017) 1, 1–9, doi:10.1016/j.jphotochem.2017.05.036

28 X. J. Hu, J. S. Wang, Y. G. Liu, X. Li, G. M. Zeng, Z. L. Bao, X. X. Zeng, A. W. Chen, F. Long, Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics, J. Hazard. Mater., 185 (2017) 1, 306–314, doi:10.1016/j.jhazmat.2010.09.034

29 M. M. Rao, A. Ramesh, G. P. C. Rao, Seshaiah, K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls, J. Hazard. Mater., 129 (2006) 1–3, 123–129 doi:10.1016/j.jhazmat.2017.01.042

30 A. Lqbal, M. R. Jan, J. Shah, Recovery of cadmium, lead and nickel from leach solutions of waste electrical and electronic equipment using activated carbon modified with 1-(2-pyridylazo)-2-naphthol, Hydrometallurgy., 201 (2021), 105570, doi:10.1016/j.hydromet. 2021.105570

31 M. S. Chiou, H. Y. Li, Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads, Chemosphere. 50 (2003) 8, 1095–1105, doi:10.1016/S0045-6535(02)00636-7

32 L. Uzun, F. Güzel, Rate studies on the adsorption of some dyestuffs and p-nitrophenol by chitosan and monocarboxy¬methyl¬ated(mcm)-chitosan from aqueous solution, J. Hazard. Mater., 118 (2005), 1–3, 141–154, doi:10.1016/j.jhazmat.2004.10.006

Published
2024-02-06
How to Cite
1.
Xiao X, Zhou J, Zhou D, Li L, Wu Y, Zhou X, Du L, Chen H. NOVEL MAGNETIC ALGINATE/HYDROXYAPATITE COMPOSITE WITH HIGH-EFFICIENCY CADMIUM-ADSORPTION PERFORMANCE. MatTech [Internet]. 2024Feb.6 [cited 2024Apr.24];58(1):61–68. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/927