MEASUREMENT OF ADHESION PROPERTIES OF Ni2Al3 COATING WITH A MICRO SCRATCH TESTER AND AUTOMATIC SCRATCH TESTER
Abstract
A functionally graded Ni2Al3 coating, prepared with a two-step method of nickel electroplating and pack aluminizing, can improve the hardness of low-carbon steel and other surface performance features. However, the adhesion between the coating and the substrate is an important factor affecting these properties. The primary purpose of this study was to introduce a test for determining the adhesion of the Ni2Al3 coating, which included two tools, namely a micro scratch tester (MST) and a WS-2000 automatic scratch tester, used for measuring the coating adhesion and observing the scratch morphology. Results show that the adhesion is about 14 N according to the MST, which is equivalent to 56 N obtained with WS-2000. As the load increases, the scratches gradually become larger and deeper. Finally, the surface morphology shows cracks, indicating that the coating has failed.
References
1. Y. Tang, Z. S. Ma, Q. Ding, T. Wang, Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis, Compos. Struct., 264 (2021) 8, 113746, doi:10.1016/j.compstruct.2021.113746
2. M. J. Yu, A. X. Feng, L. J. Yang, M. E. Thomas, Microstructure and corrosion behaviour of 316L-IN625 functionally graded materials via laser metal deposition, Corros. Sci., 193 (2021), 109876, doi:10.1016/j.cors ci.2021.109876
3. S. Chandrasekaran, S. Hari, M. Amirthalingam, Functionally graded materials for marine risers by additive manufacturing for high-temperature applications: Experimental investigations, Structures, 35 (2022), 931–938, doi:10.1 016/j.istruc.2021.12.004
4. X. Z. Fan, L. Zhu, W. Z. Huang, Investigation of NiAl intermetallic compound as bond coat for thermal barrier coatings on Mg alloy, J. Alloy. Compd., 729 (2017), 617–626, doi:10.1016/j.jallcom. 2017.09.190
5. X. Chen, C. Li, S. J. Xu, Y. Hu, G. C. Ji, H. T. Wang, Microstructure and Microhardness of Ni/Al-TiB2 composite coatings prepared by cold spraying combined with post annealing treatment, Coatings, 9 (2019) 9, 565, doi:10.3390 /coatings9090565
6. X. X. Zhao, X. M. Li, M. F. Li, C. G. Zhou, Comparison of the corrosion resistance of Ni2Al3 coating with and without Ni-Re interlayer in dry and wet CO2 gas, Corros. Sci., 159 (2019), 108121, doi:10.1016/j.corsci. 2019. 108121
7. Y. D. Wang, Y. P. Zhang, G. Liang, Q. L.Ding, Low temperature formation of aluminide coatings on the electrodeposited nanocrystalline Ni and its oxidation resistance with La2O3/CeO2 nanoparticle dispersion, Vacuum, 173 (2020), 109148, doi:10.1016/j.vacuum.2019. 109148
8. Y. T. Zhao, Z. H. Tian, B. B. Li, H. P. Ren, Effect of rare earth(CeCl3) on oxidation resistance of Ni2Al3/Ni composite coatings on heat-resistant steel, Rare. Metal. Mat. Eng., 48 (2019) 11, 3452–3432, doi:CNKI: SUN: COS E.0.2019-11-002
9. K. Mausam, M. Goyal, Development of nanocrystalline Ni-Al coatings and its thermal stability, Mater. Today: Proced., 37 (2021) 2, 3189–3193, doi:10.1016/j.matpr.2020.09.059
10. M. Li, C. Kong, J. Zhang, C. Zhou, D. J. Young, Oxidation behavior of Ni-Al coating with and without a Ni-Re diffusion barrier in dry CO2 gas at 650 oC, Corros. Sci., 149 (2019) 1, 236–243, doi:10.1016/ j. corsci. 2019. 01.021
11. T. Yu, H. Tang, Microstructure and high-temperature wear behavior of laser clad TaC-reinforced Ni-Al-Cr coating, Appl. Surf. Sci., 592 (2022), 153263, doi:10.1016/j.apsusc.2022.153263
12. B. J. Harder, M. J. Presby, J. A. Salem, S. M. Arnold, S. K. Mital, Environmental barrier coating oxidation and adhesion strength, J. Eng. Gas. Turb. Power, 143 (2021), 031004, doi:10.1115/1.4049414
13. G. Singh, A. Saini, B. S. Pabla, Preparation and characterization of Sr-doped HAp biomedical coatings on polydopamine-treated Ti6Al4V substrates, Surf. Rev. Lett., 30 (2023) 1, doi:10.1142/ S0218625 X21410092
14. N. N. Li, L. Xu, L. Huang, Y. T. Tong, Z. Q. Jiang, K. L. Li, Preparation and hardness of a functionally graded Ni-Al coating, Mater. Tehnol., 57 (2023) 1, 27–33, doi:10.17222/mit.2022.650
15. Y. F. Gao, H. T. Xu, W. C. Oliver, G. M. Pharr, Effective elastic modulus of film-on-substrate systems under normal and tangential contact, J. Mech. Phys. Solid., 56 (2008) 2, 402–416, doi:10.1016/ j.jmps.2007.05. 015