MEASUREMENT OF ADHESION PROPERTIES OF Ni2Al3 COATING WITH A MICRO SCRATCH TESTER AND AUTOMATIC SCRATCH TESTER

  • Ningning Li North China University of Water Resources and Electric Power, Zhengzhou
  • Lei Xu School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, P. R. China
  • Jin Peng School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, P. R. China
  • Xi Chen School of Materials Science and Engineering, North China University of Water Resources and Electric Power,
  • Mingqi Tang Ural Institute, North China University of Water Resources and Electric Power, Zhengzhou 450045, P. R. China
  • Jiajia Yang School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, P. R. China
  • Yan Shang School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, P. R. China
Keywords: Ni2Al3 coating, automatic scratch tester, adhesion, cracks

Abstract

A functionally graded Ni2Al3 coating, prepared with a two-step method of nickel electroplating and pack aluminizing, can improve the hardness of low-carbon steel and other surface performance features. However, the adhesion between the coating and the substrate is an important factor affecting these properties. The primary purpose of this study was to introduce a test for determining the adhesion of the Ni2Al3 coating, which included two tools, namely a micro scratch tester (MST) and a WS-2000 automatic scratch tester, used for measuring the coating adhesion and observing the scratch morphology. Results show that the adhesion is about 14 N according to the MST, which is equivalent to 56 N obtained with WS-2000. As the load increases, the scratches gradually become larger and deeper. Finally, the surface morphology shows cracks, indicating that the coating has failed.

References

1. Y. Tang, Z. S. Ma, Q. Ding, T. Wang, Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis, Compos. Struct., 264 (2021) 8, 113746, doi:10.1016/j.compstruct.2021.113746

2. M. J. Yu, A. X. Feng, L. J. Yang, M. E. Thomas, Microstructure and corrosion behaviour of 316L-IN625 functionally graded materials via laser metal deposition, Corros. Sci., 193 (2021), 109876, doi:10.1016/j.cors ci.2021.109876

3. S. Chandrasekaran, S. Hari, M. Amirthalingam, Functionally graded materials for marine risers by additive manufacturing for high-temperature applications: Experimental investigations, Structures, 35 (2022), 931–938, doi:10.1 016/j.istruc.2021.12.004

4. X. Z. Fan, L. Zhu, W. Z. Huang, Investigation of NiAl intermetallic compound as bond coat for thermal barrier coatings on Mg alloy, J. Alloy. Compd., 729 (2017), 617–626, doi:10.1016/j.jallcom. 2017.09.190

5. X. Chen, C. Li, S. J. Xu, Y. Hu, G. C. Ji, H. T. Wang, Microstructure and Microhardness of Ni/Al-TiB2 composite coatings prepared by cold spraying combined with post annealing treatment, Coatings, 9 (2019) 9, 565, doi:10.3390 /coatings9090565

6. X. X. Zhao, X. M. Li, M. F. Li, C. G. Zhou, Comparison of the corrosion resistance of Ni2Al3 coating with and without Ni-Re interlayer in dry and wet CO2 gas, Corros. Sci., 159 (2019), 108121, doi:10.1016/j.corsci. 2019. 108121

7. Y. D. Wang, Y. P. Zhang, G. Liang, Q. L.Ding, Low temperature formation of aluminide coatings on the electrodeposited nanocrystalline Ni and its oxidation resistance with La2O3/CeO2 nanoparticle dispersion, Vacuum, 173 (2020), 109148, doi:10.1016/j.vacuum.2019. 109148

8. Y. T. Zhao, Z. H. Tian, B. B. Li, H. P. Ren, Effect of rare earth(CeCl3) on oxidation resistance of Ni2Al3/Ni composite coatings on heat-resistant steel, Rare. Metal. Mat. Eng., 48 (2019) 11, 3452–3432, doi:CNKI: SUN: COS E.0.2019-11-002

9. K. Mausam, M. Goyal, Development of nanocrystalline Ni-Al coatings and its thermal stability, Mater. Today: Proced., 37 (2021) 2, 3189–3193, doi:10.1016/j.matpr.2020.09.059

10. M. Li, C. Kong, J. Zhang, C. Zhou, D. J. Young, Oxidation behavior of Ni-Al coating with and without a Ni-Re diffusion barrier in dry CO2 gas at 650 oC, Corros. Sci., 149 (2019) 1, 236–243, doi:10.1016/ j. corsci. 2019. 01.021

11. T. Yu, H. Tang, Microstructure and high-temperature wear behavior of laser clad TaC-reinforced Ni-Al-Cr coating, Appl. Surf. Sci., 592 (2022), 153263, doi:10.1016/j.apsusc.2022.153263

12. B. J. Harder, M. J. Presby, J. A. Salem, S. M. Arnold, S. K. Mital, Environmental barrier coating oxidation and adhesion strength, J. Eng. Gas. Turb. Power, 143 (2021), 031004, doi:10.1115/1.4049414

13. G. Singh, A. Saini, B. S. Pabla, Preparation and characterization of Sr-doped HAp biomedical coatings on polydopamine-treated Ti6Al4V substrates, Surf. Rev. Lett., 30 (2023) 1, doi:10.1142/ S0218625 X21410092

14. N. N. Li, L. Xu, L. Huang, Y. T. Tong, Z. Q. Jiang, K. L. Li, Preparation and hardness of a functionally graded Ni-Al coating, Mater. Tehnol., 57 (2023) 1, 27–33, doi:10.17222/mit.2022.650

15. Y. F. Gao, H. T. Xu, W. C. Oliver, G. M. Pharr, Effective elastic modulus of film-on-substrate systems under normal and tangential contact, J. Mech. Phys. Solid., 56 (2008) 2, 402–416, doi:10.1016/ j.jmps.2007.05. 015

Published
2024-02-06
How to Cite
1.
Li N, Xu L, Peng J, Chen X, Tang M, Yang J, Shang Y. MEASUREMENT OF ADHESION PROPERTIES OF Ni2Al3 COATING WITH A MICRO SCRATCH TESTER AND AUTOMATIC SCRATCH TESTER. MatTech [Internet]. 2024Feb.6 [cited 2025Apr.29];58(1):47–51. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/920

Most read articles by the same author(s)