EFFICIENT PRODUCTION OF SMALL-SIZED SiO2 NANOPARTICLES AND THEIR APPLICATION IN A WATERBORNE ACRYLIC-AMINO VARNISH

  • Jinping Wu School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
  • Jinxiang Mao School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
  • Hong Liu School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
  • Xichuan Cao School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
  • Minmin Chen School of Stomatology, Xuzhou Medical University, Xuzhou 221004, P. R. China
Keywords: SiO2 nanoparticles, non-fixed point feeding, acrylic-amino varnish, physical properties

Abstract

In this study, we optimized the preparation of 100–160 nm monodispersed SiO2 nanoparticles and, through doping, investigated their effects on the physical properties of a water-based acrylic-amino varnish. First, using a non-fixed point feeding technique based on the half-batch sol-gel method, we enhanced the yield of small-sized monodispersed SiO2 nanoparticles. To reduce the cost of production and organic-matter pollution, we assessed certain solution parameters including tetraethyl orthosilicate (TEOS), ethanol (ETOH) and ammonia in a single-reaction system. We found that the gloss, clarity, hardness, adhesion, and other physical properties of the acrylic-amino varnish were successfully enhanced through an addition of 1.2 % SiO2 nanoparticles.

References

1 M. N. Khrizanforov, S. V. Fedorenko, A. R. Mustafina, V. V. Khrizanforova, K. V. Kholin, I. R. Nizameev, T. V. Gryaznova, V. V. Grinenko, Y. H. Budnikova, Nano-architecture of silica nanoparticles as a tool to tune both electrochemical and catalytic behavior of NiIIŽSiO2, RSC Adv., 9 (2019), 22627–22635

2 S. V. Fedorenko, M. E. Jilkin, T. V. Gryaznova, E. O. Iurko, O. D. Bochkova, A. R. Mukhametshina, I. R. Nizameev, K. V. Kholin, R. Mazzaro, V. Morandi, Silica nanospheres coated by ultrasmall Ag0 nanoparticles for oxidative catalytic application, Colloids Interface Sci. Commun., 21 (2017), 1–5

3 R. Zhang, X. Wang, M. Cheng, Preparation and characterization of potato starch film with various sizes of nano-SiO2, Polymers, 10 (2018), 1172–1188

4 A. S. Nguyen, T. D. Nguyen, T. T Thai, A. T. Trinh, G. V. Pham, H. Thai, D. L. Tran, T. X. H. To, D. T. Nguyen, Synthesis of conducting PANi/SiO2 nanocomposites and their effect on electrical and mechanical properties of antistatic waterborne epoxy coating, J. Coat. Technol. Res., 17 (2020), 361–370

5 N. F. Attia, M. Moussa, A. M. F. Sheta, R. Taha, H. Gamal, Synthesis of effective multifunctional textile based on silica nanoparticles, Prog. Org. Coat., 106 (2017), 41–49

6 J.-X. Mao, M.-M. Chen, Y. Deng, H. Liu, Z. Ju, Z. Xing, X.-C. Cao, Synthesis of uniform silica nanospheres wrapped in nitrogen-doped carbon nanosheets with stable lithium-ion storage properties, Mater. Sci., 54 (2019), 12767–12781

7 E. D. H. Mansfield, Y. Pandya, E. A. Mun, S. E. Rogers, I. Abutbul-Ionita, D. Danino, A. C. Williams, V. V. Khutoryanskiy, Structure and characterisation of hydroxyethylcellulose-silica nanoparticles, RSC Adv., 8 (2018), 6471–6478

8 W. Cheng, Z. Xu, S. Chen, J. Ai, J. Lin, Q. Chen, Compatibilization behavior of double spherical TETA-SiO2ŽPDVB Janus particles anchored at the phase interface of acrylic resin/epoxy resin (AR/EP) polymer blends, ACS Omega., 4 (2019), 17607–17614

9 X.-Y. Sun, J.-L. Tu, L. Li, W.-N. Zhang, K. Hu, Preparation of wide-angle and abrasion-resistant multi-layer antireflective coatings by MgF2 and SiO2 mixed sol, Colloids Surf. A: Physicochem. Eng. Aspects, 602 (2020), 1–12

10 T. M. Arantes, A. H. Pinto, E. R. Leite, E. Longo, E. R. Camargo, Synthesis and optimization of colloidal silica nanoparticles and their functionalization with methacrylic acid, Colloids Surf. A: Physicochem. Eng. Aspects, 415 (2012), 209–217

11 R. J. González-Álvarez, I. Naranjo-Rodríguez, M. P. Hernández-¬Artiga, J. M. Palacios-Santander, L. Cubillana-Aguilera, D. Bellido-Milla, Experimental design applied to optimisation of silica nanoparticle size obtained by sonosynthesis, J. Sol-Gel Sci. Technol., 80 (2016), 378–388

12 R. D. Aspasio, J. F. D. Silva, R. Borges, J. Marchi, Sol-gel synthesis of amorphous silica nanoparticles: Study of the process parameter influence on structure and particle size distribution, Mater. Sci. Forum., 912 (2018), 77–81

13 M. Shekarriz, R. Khadivi, S. Taghipoor, M. Eslamian, Systematic synthesis of high surface area silica nanoparticles in the sol-gel condition by using the central composite design (CCD) method, Can. J. Chem. Eng., 92 (2014), 828–834

14 G.-Y. Ren, H.-J. Su, S.-D. Wang, The combined method to synthesis silica nanoparticle by Stöber process, J. Sol-Gel Sci. Technol., 96 (2020), 108–120

15 Y. Yin, R. Huang, Y. Xu, C. Wan, Preparation and characterization of highly dispersed silica nanoparticles via nonsurfactant template for fabric coating, Text. Inst., 108 (2017), 1662–1668

16 S. Prabha, D. Durgalakshmi, P. Aruna, S. Ganesan, Influence of the parameters in the preparation of silica nanoparticles from biomass and chemical silica precursors towards bioimaging application, Vacuum, 160 (2019), 181–188

17 R. S. Fernandes, I. M. Raimundo, M. F. Pimentel, Revising the synthesis of Stöber silica nanoparticles: A multivariate assessment study on the effects of reaction parameters on the particle size, Colloids Surf. A: Physicochem. Eng. Aspects, 577 (2019), 1–7

18 R. Eslami, R. Bagheri, Y. Hashemzadeh, M. Salehi, Optical and mechanical properties of transparent acrylic based polyurethane nano Silica composite coatings, Prog. Org. Coat., 77 (2014), 1184–1190

19 A. Gharieh, A. mirmohseni, M. Khorasani, Preparation of UV-opaque, Vis-transparent acrylic-silica nanocomposite coating with promising physico-mechanical properties via miniemulsion polymerization, J. Coat. Technol. Res., 16 (2019), 781–789

20 G.-M. Zhao, C.-X. Ding, M.-Z. Pan, S.-C. Zhai, Fabrication of NCC-SiO2 hybrid colloids and its application on waterborne poly(acrylic acid) coatings, Prog. Org. Coat., 122 (2018), 88–95

21 P. Dileep, S. Jacob, S. K. Narayanankutty, Functionalized nanosilica as an antimicrobial additive for waterborne paints, Prog. Org. Coat., 142 (2020), 1–7

22 C. Xiong, L. Chen, Synthesis of High Solid Content Waterborne Acrylic Resin and Preparation of its Amino Baking Paint, Shanghai Coatings, 55 (2017), 8–10

23 F. Xu, Z.-Y. Zhuang, H.-Q. Zhang, B.-Y. Zhu, Z. Hu, K. Zhu, H.-G. Liu, Y.-Y. Wang, M. Liu, Y.-P. Wang, Preparation and Application of Environmental Friendly Waterborne Acrylic-Amino Baking Coatings, Coatings Technology & Abstracts, 38 (2017), 1–5

24 D. Nagao, H. Nakabayashi, H. Ishii, M. Konno, A unified mechanism to quantitatively understand silica particle formation from tetraethyl orthosilicate in batch and semi-batch processes, Colloid Interface Sci., 394 (2013), 63–68

Published
2024-04-03
How to Cite
1.
Wu J, Mao J, Liu H, Cao X, Chen M. EFFICIENT PRODUCTION OF SMALL-SIZED SiO2 NANOPARTICLES AND THEIR APPLICATION IN A WATERBORNE ACRYLIC-AMINO VARNISH. MatTech [Internet]. 2024Apr.3 [cited 2024May18];58(2):231–237. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/905