EFFECT OF STEEL’S THERMAL CONDITION ON THE TRANSFORMATION TEMPERATURES OF TWO HOT-WORK TOOL STEELS WITH INCREASED THERMAL CONDUCTIVITY

  • Tilen Balaško Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
  • Jaka Burja Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
  • Jožef Medved Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
Keywords: thermal analysis, hot-work tool steels, differential scanning calorimetry, heat treatment

Abstract

The aim of our study was to investigate how different thermal conditions affect the transformation temperatures of two hot-work steels with high thermal conductivity. We focused on two conditions: soft annealing, and quenching and tempering. Soft annealing results in a ferritic steel matrix with spherical carbides, while quenching and tempering result in a fully hardened and tempered martensitic matrix with secondary and tempering carbides. We analysed samples using a simultaneous thermal analysis (STA) and differential scanning calorimetry (DSC) to determine the transformation temperatures. Controlled heating and cooling allowed us to observe the energy changes associated with the phase transformations. The equilibrium temperatures were calculated using the CALPHAD method. Our study investigated the influence of thermal conditions on different transformation temperatures, including solidus/liquidus temperatures, austenite solid transformation temperatures (A1 and A3), austenite solidification temperatures and bainite and/or martensite transformation temperatures. A DSC analysis was used to quantitatively measure the transformation temperatures and energy absorption during the endothermic processes (austenite solid transformation and melting) and to study the energy release during the exothermic processes (solidification and transformation). The results showed that soft annealing reduced the solidification interval and the solidus temperature, while energy absorption increased during melting. Conversely, quenching and tempering reduced the austenite solid transformation temperatures and energy release during solidification, including δ-ferrite solidification.

References

1 C. R. Sohar, Lifetime controlling defects in tool steels, Springer, Berlin 2011, 224
2 G. Roberts, G. Krauss, R. Kennedy, Tool Steels: 5th ed., ASM International, Materials Park 1998, 364
3 W. F. Hosford, Iron and Steel, Cambridge University Press, Cambridge 2012, 310
4 Heat Treater’s Guide: Practices and Procedures for Irons and Steels, ASM International, Metals Park 1995, 904
5 R. A. Mesquita, K. Michael, R. Schneider, Tool steels: properties and performance, CRC Press, Boca Raton 2017, 245
6 ASM handbook, volume 1: Properties and selection: irons, steels, and high-performance alloys, ASM International, Materials Park 1990, 1063
7 C. Højerslev, Tool steels, Risø National Laboratory, Roskilde 2001, 25, http://orbit.dtu.dk/files/7728903/ris_r_1244.pdf, January 2021
8 H. M. COBB, Steel products manual : tool steels. Iron and Steel Society, Warrendale 2000, 79
9 N. Sandberg, On the Machinability of High Performance Tool Steels, Doctoral thesis, Acta Universitatis Upsaliensis, 2012, 58, https://www.diva-portal.org/smash/get/diva2:514634/FULLTEXT01.pdf, 05.08.2012
10 J. Sjöström, Chromium martensitic hot-work tool steels - damage, performance and microstructure, Doctoral thesis, Karlstad University, 2004, 53, http://www.diva-portal.org/smash/get/diva2:24899/FULLTEXT01.pdf, 21.01.2013
11 Z. Taha, A. R. Yusoff, M. F. Mohamd Sharif, M. A. H. Saharudin, M. F. Zamri, Comparison of Cooling Performance between High Thermal Conductivity Steel (HTCS 150) and Hot Work Tool Steel (SKD 61) Insert for Experimental Tool Using Finite Element Analysis, Adv. Mater. Res., 903 (2014), 163-168, doi:10.4028/www.scientific.net/AMR.903.163
12 M. Ayabe, T. Nagaoka, K. Shibata, H. Nozute, H. Koyama, K. Ozaki, T. Yanagisawa, Effect of high thermal conductivity die steel in aluminum casting. Int. J. Met., 2 (2008), 47-55, doi:10.1007/BF03355427
13 S. Li, X. Wu, X. Li, X. He, High temperature performance of a Mo-W type hotwork die steel of high thermal conductivity, Chinese J. Mater. Res., 31 (2017), 32-40, doi:10.11901/1005.3093.2016.037
14 I. Valls, A. Hamasaiid, A. Padré, High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools, J. Phys. Conf. Ser., 896 (2017), doi: 10.1088/1742-6596/896/1/012046
15 M. Peet, H. Hasan, H. Bhadeshia, Prediction of thermal conductivity of steel, Int. J. Heat Mass Transf., 54 (2011) 11-12, 2602-2608, doi:10.1016/j.ijheatmasstransfer.2011.01.025
16 A. R. Zulhishamuddin, S. N. Aqida, An overview of high thermal conductive hot press forming die material development, J. Mech. Eng. Sci., 9 (2015), 1686-1694, doi: 10.15282/jmes.9.2015.14.0162
17 G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Materials Park 2015, 682
18 G. E. Totten, Steel Heat Treatment: Metallurgy and Technologies, CRC Press, Boca Raton 2006, 848
19 G. N. Haidemenopoulos, Physical Metallurgy: Principles and Design, CRC Press, Boca Raton 2018, 476
20 Q. Zhou, X. Wu, N. Shi, J. Li, N. Min, Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering, Mater. Sci. Eng. A, 528 (2011) 18, 5696–5700, doi:10.1016/j.msea.2011.04.024
21 A. Medvedeva, J. Bergström, S. Gunnarsson, J. Andersson, High-temperature properties and microstructural stability of hot-work tool steels, Mater. Sci. Eng. A, 523 (2009) 1–2, 39–46, doi:10.1016/j.msea.2009.06.010
22 Z. Zhang, D. Delagnes, G. Bernhart, Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements, Mater. Sci. Eng. A, 380 (2004) 1, 222–230, doi:10.1016/j.msea.2004.03.067
23 N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, C. Levaillant, Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel, Mater. Sci. Eng. A, 387–389 (2004), 1-2, 171–175, doi:10.1016/j.msea.2004.02.073
24 A. Jilg, T. Seifert, Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening, Mater. Sci. Eng. A, 721 (2018), 96–102, doi:10.1016/j.msea.2018.02.048
24 D. Caliskanoglu, I. Siller, R. Ebner, H. Leitner, F. Jeglitsch, W. Waldhauser, Thermal Fatigue and Softening Behavior of Hot Work Tool Steels, Proc. 6th Int. Tool. Conf., Karlstad 2002, 707–719
26 R. Markežič, N. Mole, I. Naglič, R. Šturm, Time and temperature dependent softening of H11 hot-work tool steel and definition of an anisothermal tempering kinetic model, Mater. Today Commun., 22 (2020), 1–7, doi:10.1016/j.mtcomm.2019.100744
27 S. Kheirandish, H. Saghafian, J. Hedjazi, M. Momeni, Effect of heat treatment on microstructure of modified cast AISI D3 cold work tool steel, J. Iron Steel Res. Int., 17 (2010), 40–45, doi:10.1016/S1006-706X(10)60140-9
28 C. J. Chen, K. Yan, L. Qin, M. Zhang, X. Wang, T. Zou, Z. Hu, Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel, J. Mater. Eng. Perform., 26 (2017) 11, 5577–5589, doi:10.1007/s11665-017-2992-0
29 M. Priyadarshini, A. Behera, C. K. Biswas, D. K. Rajak, Experimental Analysis and Mechanical Characterization of AISI P20 Tool Steel Through Heat-Treatment Process, J. Bio- Tribo-Corrosion, 8 (2022) 1, 1–10, doi:10.1007/s40735-021-00607-3
30 F. Huber, C. Bischof, O. Hentschel, J. Heberle, J. Zettl, K. Y. Nagulin, M. Schmidt, Laser beam melting and heat-treatment of 1.2343 (AISI H11) tool steel – microstructure and mechanical properties, Mater. Sci. Eng. A, 742 (2018), 109–115, doi:10.1016/j.msea.2018.11.001
31 I. Souki, D. Delagnes, P. Lours, Influence of heat treatment on the fracture toughness and crack propagation in 5% Cr martensitic steel, Procedia Eng., 10 (2011), 631–637, doi:10.1016/j.proeng.2011.04.105
32 N. B. Dhokey, S. S. Maske, P. Ghosh, Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel (H13), Mater. Today Proc., 43 (2021), 3006–3013, doi:10.1016/j.matpr.2021.01.361
33 W. R. Prudente, J. F. C. Lins, R. P. Siqueira, P. S. N. Mendes, R. E. Pereira, Microstructural evolution under tempering heat treatment in AISI H13 hot-work tool steel, Int. J. Eng. Res. Appl., 7 (2017) 4, 67–71, doi:10.9790/9622-0704046771
34 T. Balaško, M. Vončina, J. Medved, Simultaneous thermal analysis of the high‑temperature oxidation behaviour of three hot‑work tool steels, J. Therm. Anal. Calorim., 148 (2022), 1251–1264, doi:10.1007/s10973-022-11616-w
35 T. Balaško, M. Vončina, J. Burja, B. Š. Batič, High‑Temperature Oxidation Behavior of Tool Steel with Increased Thermal Conductivity, Oxid. Met., 98 (2022), 135–161, doi:10.1007/s11085-022-10119-1
36 K. Grabnar, J. Burja, T. Balaško, A. Nagode, J. Medved, THE INFLUENCE OF Nb, Ta AND Ti MODIFICATION ON HOT-WORK TOOL-STEEL GRAIN GROWTH DURING AUSTENITIZATION, Mater. Tehnol., 56 (2022) 3, 331–338, doi:10.17222/mit.2022.486
37 E. Kaschnitz, P. Hofer-Hauser, W. Funk, Electrical resistivity measured by millisecond pulse-heating in comparison to thermal conductivity of the hot work tool steel AISI H11 (1.2343) at elevated temperature, High Temp. - High Press., 49 (2020) 1–2, 75–87, doi:10.32908/hthp.v49.825
38 T. Balaško, J. Burja, J. Medved, Effect of Ni on solidification of duplex low-density steels, J. Therm. Anal. Calorim., 142 (2020) 5, 1605–1611, doi:10.1007/s10973-020-10254-4
39 E. Wielgosz, T. Kargul, Differential scanning calorimetry study of peritectic steel grades, J. Therm. Anal. Calorim., 119 (2015) 3, 1547–1553, doi:10.1007/s10973-014-4302-5
40 B. Smetana, M. Žaludová, S. Zlá, J. Dobrovská, M. Cagala, I. Szurman, D. Petlák, Application of high temperature DTA technique to Fe based systems, Proc. of the 19th Int. Metallurgical and Materials Conference, Roznov pod Radhostem 2010. 357–362
41 B. Smetana, S. Zlá, J. Dobrovská, P. Kozelsky, Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA, Int. J. Mater. Res., 101 (2010) 3, 398–408, doi:10.3139/146.110283
Published
2023-12-11
How to Cite
1.
Balaško T, Burja J, Medved J. EFFECT OF STEEL’S THERMAL CONDITION ON THE TRANSFORMATION TEMPERATURES OF TWO HOT-WORK TOOL STEELS WITH INCREASED THERMAL CONDUCTIVITY. MatTech [Internet]. 2023Dec.11 [cited 2025Jan.19];57(6):617–626. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/902