THE INFLUENCE OF TiO2 NANOPARTICLES ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF AA2024 ALUMINIUM ALLOY

  • Hamid M. Mahan Samara National Research University, Samara, Russia
  • Sergey V. Konovalov Samara National Research University, Samara, Russia
  • Kirill Osintsev Samara National Research University, Samara, Russia
  • Irina Panchenko Siberian State Industrial University, Siberian, Russia
Keywords: metal-matrix composites, nanoparticles, aluminum matrix, aging

Abstract

In this study aluminum alloy 2024 was reinforced with different mass fractions (0 w/%, 2.5 w/%, 5 w/%, and 7.5 w/%) of titanium dioxide nanoparticles using the stir-casting method. The main objective was to study an effect of an addition of TiO2 nanoparticles on the microstructure and the mechanical properties of the 2024 aluminum alloy composite fabricated by stir casting. Scanning electron microscopy, energy-dispersive analysis, as well as X-ray diffraction analysis were implemented to characterize the microstructure, elemental and phase composition of the samples. The tensile and Vickers hardness tests were carried out to evaluate the mechanical properties. The results showed that the addition of 7.5 w/% TiO2 nanoparticles increases the ultimate tensile strength by 37 % and elongation by 71 % while decreases the hardness by 14 % comparing with the initial alloy. The highest hardness was demonstrated in the alloy with 5 w/% TiO2.

References

1D. Yang, F. Qiu, Q. Zhao, Q. Jiang, Excellent compressive strength and ductility of Ti5Si3–coated SiCP/Al2014 composites. Journal of Alloys and Compounds, (2017),698, 1086-1093.‏ doi.org/10.1016/j.jallcom.2016.12.169.
2A. S. Walia, V. Srivastava, V. Jain, S.A. Bansal, Effect of Tic reinforcement in the copper tool on roundness during EDM process. In Advances in Materials Science and Engineering: Select Proceedings of ICFMMP 2019, Springer Singapore, (2020), 125-135. DOI:10.1007/978-981-15-4059-2_10.
3G. Singh, S. Goyal, S, Microstructure and mechanical behavior of AA6082-T6/SiC/B4C-based aluminum hybrid composites. Particulate Science and Technology, 36(2), (2018), 154-161.‏ DOI: 10.1080/02726351.2010.491761
4S. Y. Duan, C. L. Wu, C. L., Gao, Z., Cha, L. M., Fan, T. W., & Chen, J. H. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys. Acta Material, (2017), 129, 352-360.‏ DOI: 10.1016/j.actamat.2010.04.045.
5V. Khanna, V. Kumar, S. A. Bansal, Effect of carbonaceous nanomaterials’ reinforcement on mechanical properties of aluminum metal-based nanocomposite: A review. Materials Today: Proceedings, 38, (2021), 289-295.‏ DOI: 10.1016/j.matpr.2020.12.177.
6R. Chandel, N. Sharma, S. A. Bansal, A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Materials, 4(5), (2021), 1243-1257.‏ DOI:10.1007/s42247-021-00186-6.
7J. Lan, X. Shen, J. Liu, L. Hua, Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging. Materials Science and Engineering: A, 745, (2019), 517-535.‏ DOI; 10.1016/j.msea.2012.01.130
8K. Osintsev, D. Zagulyaev, S. Konovalov, V. Shlyarov, Study on mechanical properties and structure of silumin after its surface modification with yttrium oxide. In AIP Conference Proceedings (Vol. 1909, No. 1, p. 020159). AIP Publishing LLC., 2017, ‏ DOI:10.1063/1.5013840.
9S. Divagar, M. VigneshwarS. T. Selvamani, Impacts of nano particles on fatigue strength of aluminum-based metal matrix composites for aerospace. Materials Today: Proceedings, 3(10), (2016), 3734-3739.‏ DOI: 10.1016/j.matpr.2020.12.177.
10Al-Furjan, M. S. H., Hajmohammad, M. H., Shen, X., Rajak, D. K., & Kolahchi, R. (2021). Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method. Journal of Alloys and Compounds, 886, 161261. DOI: 10.1016/j.jallcom.2021.161261
11M. J. Jaber, G. A. Aziz, A. J. Mohammed, H. J. AL-AIKawi, Electrical conductivity, magnetic and fatigue properties of aluminum matrix composites reinforced with nano-titanium dioxide (TiO2). Nanocomposites, 6(2), (2020), 47-55.‏ DOI: 10.1080/20550324.2020.1769976.
12J. Cheng, B. Li, Q. Cai, B. Zhao, C. Xu, Z. Chen, Aging behavior and mechanical properties of ultra-fine grained Al2024-2TiN composite prepared by spark plasma sintering. Materials Characterization, 181, (2021), 111497.‏ DOI: 10.1016/j.matchemphys.2004.03.023.
13J. Ahn, L. Chen, E. He, J.P. Dear, C. M. Davies, Optimisation of process parameters and weld shape of high power Yb-fibre laser welded 2024-T3 aluminium alloy. Journal of Manufacturing Processes, 34, (2018), 70-85.‏ DOI: 10.1016/j.jmapro.2019.04.017.
14Z. L. Chao, L. C. Zhang, L.T. Jiang, J. Qiao, Z.G. Xu, H. T. Chi, G. H. Wu, Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system. Journal of Alloys and Compounds, 775, (2019), 290-297. doi.org/10.1016/j.jallcom.2018.09.376. ‏
15S. Nam, S. Lee, A. Roh, H. Son, M. Kim, H. Choi, Role of supersaturated Al-C phases in mechanical properties of Al/fullerene composites. Scientific Reports, 11(1), (2021), 13143.‏ DOI: 10.1038/s41598-021-92551-y
16R. Serra-Maia, C. Winkler, M. Murayama, K. Tranhuu, F. M. Michel, Abundance and speciation of surface oxygen on nanosized platinum catalysts and effect on catalytic activity. ACS Applied Energy Materials, 1(7), (2018), 3255-3266.‏ DOI: 10.1021/acsaem.8b00474.
17V. Ahmad, M. S., Azarniya, H.R. M. Hosseini, Thermomechanical synthesis of hybrid in-situ Al-(Al3Ti+ Al2O3) composites through nanoscale Al-Al2TiO5 reactive system. Journal of Alloys and Compounds, 789, (2019), 493-505.‏ DOI: 10.1016/j.jallcom.2019.03.054
18D. Chu, J. Y. Zhang, J. J. Yao, Y. Q. Han, C. J. Wu, Cu-Al interfacial compounds and formation mechanism of copper cladding aluminum composites. Transactions of Nonferrous Metals Society of China, 27(11), (2017), 2521-2528.‏ DOI: 10.1016/S1003-6326(07)60293-3.
19G. P. Zhang, Q. S. Mei, F. Chen, Y. Ma, X. M. Mei, J. Y. Li, L. Wan, . Production of a high strength Al/ (TiAl3+ Al2O3) composite from an Al-TiO2 system by accumulative roll-bonding and spark plasma sintering. Materials Science and Engineering: A, 752, (2019), 192-198.‏ DOI: 10.1016/j.msea.2019.03.012.
20S. Lakra, T. K. Bandyopadhyay, S. Das, K. Das, Synthesis and characterization of in-situ (Al–Al3Ti–Al2O3)/Al dual matrix composite. Journal of Alloys and Compounds, 842, (2020), 155745.‏ doi.org/10.1016/j.jallcom.2020.155745
Published
2023-07-29
How to Cite
1.
Mahan HM, Konovalov SV, Osintsev K, Panchenko I. THE INFLUENCE OF TiO2 NANOPARTICLES ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF AA2024 ALUMINIUM ALLOY. MatTech [Internet]. 2023Jul.29 [cited 2025Nov.18];57(4):379–384. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/898