POLYCENTRIC KNEE PROSTHESIS WITH CARBON FABRIC REINFORCED POLYMER: FABRICATION AND STRUCTURAL EVALUATION

  • A. Vasanthanathan Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi – 626005, Tamilnadu, India
  • Amudhan K Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi – 626005, Tamilnadu, India
  • J. Anish Jafrin Thilak Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi – 626005, Tamilnadu, India
Keywords: polycentric knee, prosthesis, polymer-matrix composites, vacuum resin infusion

Abstract

A prosthetic knee is an important, functional, dynamic component of a transfemoral prosthesis. This paper details a step-by-step fabrication procedure for a passive polycentric knee using carbon-fabric-reinforced polymer in a sequential order. The Solidworks® 2022 software package was used for part modelling and assembling. The three-dimensional model developed was the base for planning, visual ideation, feasibility assessment and physical prototyping. The parts of the composite knee were manufactured using a vacuum-assisted resin-infusion method. The moulds for the infusion process were designed and developed by fused-deposition modelling. The experimental static structural testing was performed in accordance with the ISO 10328 standard to evaluate the structural strength of the prosthetic knee.

References

1. Kim YC, Park CI, Kim DY, et al. Statistical analysis of amputations and trends in Korea. Prosthetics & Orthotics International, 20(1996), 88–95, doi: https://doi.org/10.3109/03093649609164424.
2. Persson B. Lower limb amputation part 1. Prosthetics & Orthotics International, 25(2001), 7–13, doi: https://doi.org/10.1080/03093640108726562.
3. McDonald CL, Westcott-McCoy S, Weaver MR, et al, Global prevalence of traumatic non-fatal limb amputation. Prosthetics & Orthotics International, 45(2020),105–114, doi: https://doi.org/10.1177/0309364620972258
4. Laferrier JZ, Groff A, Hale S, Sprunger NA, A review of commonly used prosthetic feet for developing countries: A call for research and development. Journal of Novel Physiotherapies, 08(2018), doi: https://doi.org/10.4172/2165-7025.1000380.
5. Lara-Barrios CM, Blanco-Ortega A, Guzmán-Valdivia, CH., et al, Literature review and current trends on transfemoral powered prosthetics. Advanced Robotics, 32 (2017) 2:51-62. doi:10.1080/01691864.2017.1402704.
6. Amudhan K, Vasanthanathan A, Anish Jafrin Thilak J. An insight into transfemoral prostheses: Materials, modelling, simulation, fabrication, testing, Clinical Evaluation and Performance Perspectives. Expert Review of Medical Devices, 19(2022), 123–40. doi:10.1080/17434440.2022.2039624.
7. Mohanty RK, Mohanty RC, Sabut SK. Design and analysis of polycentric prosthetic knee with enhanced kinematics and stability, Phys Eng Sci Med, 46 (2023) 1:209-226, doi: 10.1007/s13246-022-01211-6.
8. Mangera T, Kienhöfer F, Carlson KJ, et al, Optimal material selection for the construction of a paediatric prosthetic knee. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(2015),137–47, doi:10.1177/1464420715620228.
9. Arbilei MN, Prediction of mechanical and wear properties of 6026 Aluminum alloy waste to be used in prosthetics limbs. AIP Conference Proceedings, (2018), doi:10.1063/1.503922
10. Faheed KN, Hamad AQ, Oleiwi KJ. Tensile and stress analysis of hybrid composite prosthetic socket reinforced with natural fibers. Journal of Renewable Materials.10(2022), 1989–2013, doi:10.32604/jrm.2022.017573.
11. Hamad QA, Oleiwi JK., Abdulrahman SA. Tensile properties of laminated composite prosthetic socket reinforced by different fibers. Materials Today: Proceedings, (2021), doi: 10.1016/j.matpr.2021.06.348.
12. Petersen R. Carbon fiber biocompatibility for implants, Fibers, 4 (2016) 4, doi:10.3390/fib4010001.
13. Klasson BL, Carbon Fibre and Fibre Lamination in prosthetics and orthotics, Prosthetics & Orthotics International, 19 (1995) 2, 74-91, doi:10.3109/03093649509080349.
14. Nelham R, Carbon Fibre Reinforced Plastic applied to prosthetics and orthotics. Journal of Biomedical Engineering. 3 (1981) 4: 305-314, doi:10.1016/0141-5425(81)90137-0.
15. Snelson R, Fabrication of vacuum-formed sockets for limb prostheses. Orthotics Prosthetics, 27 (1973) 3, 3–13.
16. Davies RM, Russell D, Vacuum formed thermoplastic sockets for prostheses. Disability Strathclyde Bioengineering Seminars Book Series. (1979):385–390. doi: 10.1007/978-1-349-04835-9_47.
17. Coombs AG, Lawrence RB, Davies RM, Rotational moulding in the production of prostheses. Prosthetics & Orthotics International, 9 (1985) 1, 31-36, doi:10.3109/03093648509164822.
18. Mohammed HS, Salman JM, Design and modelling the prosthetic foot from suitable composite materials. American. J Eng Appl Sci. 13(2020)3, 516 – 522, doi: https://doi.org/10.3844/ajeassp.2020.516.522
19. Vitali A, Regazzoni D, Rizzi C, et al, Design and additive manufacturing of lower limb prosthetic socket. Systems, Design, and Complexity, 11(2017), doi:10.1115/imece2017-71494.
20. South BJ, Fey NP, Bosker G, et al, Manufacture of energy storage and return prosthetic feet using selective laser sintering. Journal of Biomechanical Engineering. 132 (2009) 1, doi:10.1115/1.4000166.
21. Etoundi AC, Vaidyanathan R, Burgess SC, A bio-inspired condylar knee joint for leg amputees and for knee implants, WIT Transactions on Ecology and The Environment. (2012). DOI: 10.2495/DNE-V8-N3-213-225.
22. Vasanthanathan A., Amudhan K, Govinthan CM, et al. Non‐articulated hybrid glass and carbon‐reinforced Shank tube for bio‐medical applications. Polymer Composites. 43 (2022) 8 :5726-5735. doi:10.1002/pc.26891.
23. Junqueira DM, Gomes GF, Silveira ME, et al, Design optimization and development of tubular isogrid composites tubes for lower limb prosthesis, Applied Composite Materials, 26(2018)1: 273-297. https://doi.org/10.1007/s10443-018-9692-2.
24. Strike S, Hillery M. The design and testing of a composite lower limb prosthesis. Proc Inst Mech Eng H. 214 (2000) 6:603-14. DOI: 10.1243/0954411001535633.

25. Bartkus EK, Colvin JM, Arbogast RE. Development of a novel lower limb prosthesis using low-cost composite materials. Journal of Reinforced Plastics and Composites. 13(1994)4: 301-313. doi:10.1177/073168449401300402.
26. https://urjafabrics.com/carbon-fibre-fabrics
27. Chand S. Journal of Materials Science, 35(2000)6, 1303-1313. doi:10.1023/a:1004780301489.
28. Jin F, Li X, Park S, Synthesis and application of epoxy resins: A Review. Journal of Industrial and Engineering Chemistry, 29(2015): 1-11. doi: 10.1016/j.jiec.2015.03.026.
29. Hsiao K, Heider D, Vacuum assisted resin transfer molding (VARTM) in Polymer Matrix Composites. Manufacturing Techniques for Polymer Matrix Composites (PMCs), (2012), 310-347. doi:10.1533/9780857096258.3.310.
30. Talabari A, Alaei M, Shalian H, Experimental investigation of tensile properties in a glass/epoxy sample manufactured by vacuum infusion, vacuum bag and hand layup process. Revue Des Composites Et des Matériaux Avancés, 29(2019)3, 179-182. doi:10.18280/rcma.290308.
31. Vasanthanathan A, Navin Kumar C. Fabrication of Aluminum honeycomb cored carbon fabric/epoxy composite sandwich structures via vacuum assisted resin infusion technique. Polymer Composites. 43 (2021) 3:1407-1420. doi:10.1002/pc.26461.
32. Radcliffe CW. Four-bar linkage prosthetic knee mechanisms. Prosthetics & Orthotics International. 18(3) (1994): 159-173. doi: http://dx.doi.org/10.3109/03093649409164401.
33. Michael JW. Modern Prosthetic Knee Mechanisms. Clinical Orthopaedics and Related Research, 361(1999): 39-47. DOI: 10.1097/00003086-199904000-00006
34. Ultimaker S3 Product data sheet (https://ultimaker.com/3d-printers/ultimaker-s3)
35. ISO 10328:2016 Prosthetics — Structural testing of lower-limb prostheses — Requirements and test methods.
36. https://shop.ottobock.us/Prosthetics/Lower-Limb-Prosthetics/Knees---Mechanical/c/1300
37. https://media.ossur.com/ossur-dam/image/upload/product-documents-global/Balance_Knee_OFM1_us_en_PN20206.pdf
38. https://www.endoliteindia.com/products/4-bar-knee-with-pspc
Published
2023-07-29
How to Cite
1.
Vasanthanathan A, K A, Thilak JAJ. POLYCENTRIC KNEE PROSTHESIS WITH CARBON FABRIC REINFORCED POLYMER: FABRICATION AND STRUCTURAL EVALUATION. MatTech [Internet]. 2023Jul.29 [cited 2025Nov.18];57(4):385–393. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/881