TWO-STEP SYNTHESIS AND FORMATION MECHANISM FOR LACUOS NANO-SIZED AGGLOMERATES
Abstract
We have developed a two-step synthesis method to obtain pure LaCuOS nano-sized agglomerates using La(NO3)3·6H2O, CuSO4·5H2O and NH3·H2O as the starting materials. The result shows that the precursor can be converted into La2O2SO4, La2(SO4)3 and CuO phases at 800 °C for 2 h in air, which was then converted into a pure LaCuOS phase by a reduction at 800 °C for 5 h in a flowing argon and hydrogen atmosphere. The as prepared LaCuOS nano-aggregates have poor dispersion and a wide size distribution range (50–100 nm).
References
2 S. Lardhi, A. Curutchet, L. Cavallo, M. Harb, T.L. Bahers, Phys. Chem. Chem. Phys., 19, 12321 (2017).
3 H. Matsushita, H. Takashima, A. Katsui, Phys. Stat. Sol., 8(3), 2888 (2006).
4 J. Llanos, O. Pena, J. Solid State Chem., 178(4), 957 (2005).
5 J.J. Ma, Q.Y. Liu, P.F. Liu, P. Zhang, B. Sanyal, T. Ouyang, B.T. Wang, Phys. Chem. Chem. Phys., 24, 21261 (2022).
6 H. Kamioka, H. Hiramatsu, H. Ohta, M. Hirano, App. Phys. Lett., 84(6), 879 (2004).
7 K. Ueda, K. Takafuji, H. Hiramatsu, H. Ohta, T. Kamiya, M. Hirano, H. Hosono, Chem. Mater., 15(19), 3692 (2003).
8 H. Kamioka, H. Hiramatsu, M. Hirano, K. Ueda, T. Kamiya, H. Hosono, Opt. Lett., 29(14), 1659 (2004).
9 K. Ueda, K. Takafuji, H. Hosono, J. Solid State Chem., 170 (1), 182 (2003) .
10 H. Sato, S. Nishimoto, K. Tsuji, K. Takase, H. Nakao, Y. Takahashi, T. Takano, K. Sekizawa, H. Negishi, S. Negishi, M. Nakatake, H. Namatame, M. Taniguchi, J. Alloys Compd, 408-412, 746 (2006).
11 D.O. Scanlon, J. Buckeridge, C.R.A. Catlow, G.W. Watson, J. Mater. Chem. C, 2(17), 3429 (2014).
12 K. Takase,K. Sato,O. Shoji,Y. Takahashi,Y. Takano,K. Sekizawa,Y. Kuroiwa,M. Goto, App. Phys. Lett., 90(16), 161916 (2007).
13 K. Ueda, S. Inoue, H. Hosono, N. Sarukura, M. Hirano, App. Phys. Lett., 78(16), 2333 (2001).
14 A. Renaud, L. Cario, Y. Pellegrin, E. Blart, M. Boujtita, F. Odobel, S. Jobic, RSC Adv., 5(74), 60148 (2015)
15 H. Yanagi , M. Kikuchi, K. Kim, H. Hiramatsu, T. Kamiya, M. Hirano, H. Hosono, Org. Electron. 9(5), 890 (2008)
16 M. Palazzi, C. R. Acad. Sci. Paris, 292, 789 (1981).
17 Y. Goto, M. Tanaki, Y. Okusa, T. Shibuya, K. Yasuoka, M. Matoba, Y. Kamihara, App. Phys. Lett., 105(2), 022104 (2014).
18 N.D. Zhang H. Gong, Cera. Int., 43(8), 6295 (2017).
19 Y. Nakachi, K. Ueda, J. Cryst. Growth 311(1), 114 (2008).
20 Y. Takano, C. Ogawa, Y. Miyahara, H. Ozaki, K. Sekizawa, J. Alloys Compd, 249(1-2), 221 (1997).
21 H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, App. Phys. Lett., 81(4), 598 (2002).
22 H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, H. Hosono, Thin Solid Films, 445(2), 304 (2003).
23 H. Hiramatsu, K. ueda, K. takafuji, H. ohta M. Hirano, T. kamiya, H. hosono, Appl. Phys. A, 79, 1517 (2004).
24 N.D. Zhang, D.W. Shi, X.X. Liu, A. Annadi, B.S. Tang,T.J. Huang, H. Gong, Appl. Mater. Today, 13, 15 (2018).
25 J.B. Lian, N.N. Li, H.L. Wang, Y. Su, G.M. Zhang, F. Liu, Cera. Int., 42(9), 11473 (2016).
26 L.H. Lee, Prog. Colloid Polym. Sci., 82, 337 (1990).
27 K. Huang, J.J. Wang, D.F. Wu, S. Lin, RSC Adv., 5(11), 8455 (2015).
28 E. I. Sal’nikova, D. I. Kaliev, P. O. Andreev, Russ. J. Phys. Chem. A, 85(12), 2121 (2011).
29 D.L. Murdock, G.A. Atwood, Ind. Eng. Chem., Process Des. Develop., 13(3), 254 (1974).