• Do Trung Kien Kieu Department of Silicate Materials's, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
  • Nguyen Hoc Thang Faculty of Chemical Technology, Ho Chi Minh City University of Industry and Trade (HUIT), Ho Chi Minh City, 70000, Vietnam
  • Nguyen Vu Uyen Nhi Department of Silicate Materials's, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
  • Do Quang Minh Department of Silicate Materials's, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
Keywords: residual waste sludge, water-purification plant, hydrothermal reactions, tobermorite and xonotlite, Al-tobermorite


Calcium silicate is produced from a mixture of silica sand powder, lime, paper pulp, and Portland cement hydrothermally steamed at 180 °C for about 16 h. This material is considered environmentally friendly and is popular in countries around the world. In this study, quartz sand was replaced with residual waste sludge from water-filtration plants to produce calcium silicate materials. Nowadays, the residual waste sludge from water-filtration plants is an environmental problem that needs to be treated. The results of determining the properties showed that a sample using 10 w/% residual waste sludge gave the best replacement. This sample had a bending strength of 10.95 MPa, a volumetric density of 1.57 g/cm3, and water absorption of 23.67 %. The results of the analysis of the mineral composition (by X-ray diffraction analysis and Fourier-transform infrared spectroscopy) and microstructure (by scanning electron microscopy) showed that all samples formed tobermorite and xonotlite minerals. The tobermorite and the xonotlite are hydro-silicate-calcium minerals characteristic of calcium silicate materials, which are the synthesis products of chemical reactions of SiO2, CaO, and H2O under hydrothermal conditions. Samples using 5–10 w/% of waste residual sludge have even higher mechanical strength than samples without. Therefore, using waste residual sludge from water-filtration plants to replace part of the sand in producing calcium silicate materials can be considered an effective method to treat environmental problems caused by waste residual sludge.


1. T. Luukkonen, A. Heponiemi, H. Runtti, J. Pesonen, J. Yliniemi, U. Lassi, (2019). Application of alkali-activated materials for water and wastewater treatment: a review. Rev. Environ. Sci. Bio/Technol., 18 (2019) 2, 271–297, doi:10.1007/s11157-019-09494-0

2. H. T. Nguyen, V. P. Nguyen, Q. M. Do, Effects of Curing Time to Engineering Properties of Alkaline Activated Materials Synthesized from Thu Duc Water Plant Waste Sludge, Fly Ash, and Geopolymer Aggregate, Mater. Sci. Forum, 1029 (2021), 111–117, doi:10.4028/

3. G. Smalakys, R. Siauciunas, The hydrothermal synthesis of 1.13 nm tobermorite from granite sawing powder waste, Ceram.-Silik., 64 (2020) 3, 239–248, doi:10.13168/cs.2020.0013

4. O. Watanabe, K. Kitamura, H. Maenami, H. Ishida, Hydrothermal treatment of a silica sand complex with lime, J. Am. Ceram. Soc., 84 (2001) 10, 2318–2322, doi:10.1111/j.1151-2916.2001.tb01008.x

5. S. Merlino, E. Bonaccorsi, T. Armbruster, Tobermorites: Their real structure and order-disorder (OD) character, Am. Mineral., 84 (1999) 10, 1613–1621, doi:10.2138/am-1999-1015

6. S. Shaw, S. Clark, C. Henderson, Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study, Chem. Geol., 167 (2000) 1–2, 129–140, doi:10.1016/S0009-¬2541(99)00205-3

7. T. K. Pham, T. N. Quan, Characteristic of xonotlite synthesized by hydrothermal reaction using rice husk ash and its application to absorb chrome (III) solution, Mater. Tehnol., 5 (2021) 6, 833–838, doi:10.17222/mit.2021.233

8. F. Iucolano, A. Campanile, D. Caputo, B. Liguori, Sustainable management of autoclaved aerated concrete wastes in gypsum composites, Sustainability, 13 (2021) 7, 3961, doi:10.3390/su13073961

9. G. L. Kalousek, Crystal chemistry of hydrous calcium silicates: I, substitution of aluminum in lattice of tobermorite, J. Am. Ceram. Soc., 40 (1957) 3, 74–80, doi:10.1111/j.1151-2916.1957.tb12579.x

10. M. Chen, L. Lu, S. Wang, P. Zhao, W. Zhang, S. Zhang, Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing, Constr. Build. Mater., 143 (2017), 280–288, doi:10.1016/j.conbuildmat.2017.03.143

11. D. S. Klimesch, A. Ray, DTA-TGA evaluations of the CaO–Al2O3– SiO2–H2O system treated hydrothermally, Thermochimica acta, 334 (1999) 1–2, 115–122, doi:10.1016/S0040-6031(99)00140-9

12. S. Naamen, N. Jâafar, H. B. Rhaiem, A. B. H. Amara, A. Plançon, F. Muller, XRD investigation of the intercalation of nacrite with cesium chloride, Clay Minerals, 51 (2016) 1, 29–38, doi:10.1180/claymin. 2016.051.1.03

13. N. Marinoni, M. A. Broekmans, Microstructure of selected aggregate quartz by XRD, and a critical review of the crystallinity index, Cem. Concr. Res., 54 (2013), 215–225, doi:10.1016/j.cemconres.2013. 08.007

14. F. Peryea, J. Kittrick, Relative solubility of corundum, gibbsite, boehmite, and diaspore at standard state conditions, Clays Clay Miner., 36 (1988) 5, 391–396, doi:10.1346/CCMN.1988.0360502

15. H. Xu, H. Du, L. Kang, Q. Cheng, D. Feng, S. Xia, Constructing straight pores and improving mechanical properties of gangue-based porous ceramics, J. Renewable Mater., 9 (2021) 12, 2129, doi:10.32604/jrm.2021.016090

16. R. Wu, T. Zhao, P. Zhang, D. Yang, M. Liu, and Z. Ma, Tensile behavior of Strain Hardening Cementitious Composites (SHCC) containing reactive recycled powder from various C&D waste, J. Renewable Mater., 9 (2021) 4, 743, doi:10.32604/jrm.2021.013669

17. D. Q. Minh, T. T. Dat, N. H. Thang, K. D. T. Kien, P. T. Kien, H. N. Minh, and N. V. U. Nhi, Treating waste sludge from water-purification plants with the geopolymerization method, Mater. Tehnol., 55 (2021) 5, 701–707, doi:10.17222/mit.2020.070

18. M. Takagi, H. Maeda, and E. H. Ishida, Hydrothermal solidification of green tuff/ tobermorite composition, J. Ceram. Soc. Jpn., 117 (2009), 1221–1224, doi:10.2109/jcersj2.117.1221

19. H. N. Minh, N. V. U. Nhi, Unbaked materials from mixtures of waste sludge of a water purification plant, fly ash, and water glass, Science & Technology Development Journal-Engineering and Technology, 4 (2021) 1, 663–669, doi:doi:10.32508/stdjet.v4i1.754

20. N. S. Bell, S. Venigalla, P. M. Gill, J. H. Adair, Morphological Forms of Tobermorite in Hydrothermally Treated Calcium Silicate Hydrate Gels, J. Am. Ceram. Soc., 79 (1996) 8, 2175–2178, doi:10.1111/ j.1151-2916.1996.tb08953.x

21. E. Prieto-Vicioso, V. Flores-Sasso, S. Martínez-Ramírez, L. Ruiz-Valero, G. Pérez, Characterization of lime mortar and plasters of fortress concepcion de la vega, Mater. Tehnol., 56 (2022) 5, 533–539, doi:10.17222/mit.2022.525

22. P. Yu, R. J. Kirkpatrick, B. Poe, P. F. McMillan, X. Cong, Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-infrared spectroscopy, J. Am. Ceram. Soc., 82 (1999) 3, 742–748, doi:10.1111/j.1151-2916.1999.tb01826.x

23. N. Mostafa, A. Shaltout, H. Omar, S. Abo-El-Enein, Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites, J. Alloys Compd., 467 (2009) 1–2, 332–337, doi:10.1016/j.jallcom.2007.11.130

24. Y. Liu, J. Xie, P. Hao, Y. Shi, Y. Xu, X. Ding, Study on factors affecting properties of foam glass made from waste glass, J. Renewable Mater., 9 (2021) 2, 237, doi:10.32604/jrm.2021.012228

25. X. Qu, X. Yang, S. Li, C. Tian, Z. Li, Z. Zhao, Preparation and Properties of Eco-Friendly Aerated Concrete Utilizing High-Volume Fly Ash with MgO and CaO Activators, J. Renewable Mater., 10 (2022) 12, 3335, doi:10.32604/jrm.2022.020636

26. M. Diez-Garcia, J. J. Gaitero, J. S. Dolado, C. Aymonier, Ultra-Fast Supercritical Hydrothermal Synthesis of Tobermorite under Thermodynamically Metastable Conditions, Angew. Chem., 10 (2017), 3210–3215, doi:10.1002/ange.201611858

27. K. Luke, G. Quercia, Formation of tobermorite and xonotlite fiber matrices in well cementing and impact on mechanical properties, J. Sustainable Cem.-Based Mater., 5 (2016) 1-2, 91–105, doi:10.1080/ 21650373.2015.107775227

How to Cite
Kieu DTK, Thang NH, Uyen NhiNV, Minh DQ. SYNTHESIS OF CALCIUM SILICATE MATERIALS FROM THE RESIDUAL WASTE SLUDGE OF A WATER-PURIFICATION PLANT. MatTech [Internet]. 2024Feb.6 [cited 2024Apr.24];58(1):53–60. Available from: