MICROSTRUCTURE CHARACTERISTICS OF Cr3C2-NiCr COATINGS DEPOSITED WITH THE HIGH-VELOCITY OXY-FUEL THERMAL-SPRAY TECHNIQUE

  • Jason Lauzuardy Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • Eddy Agus Basuki Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • Erie Martides Research Center for Advanced Materials, National Research and Innovation Agency, Serpong 15314, Indonesia
  • Selly Septianissa Department of Mechanical Engineering, Faculty of Engineering, Widyatama University, Bandung 40125, Indonesia
  • Budi Prawara Research Center for Advanced Materials, National Research and Innovation Agency, Serpong 15314, Indonesia
  • Dedi Research Center for Electronics, National Research and Innovation Agency, Bandung 40135, Indonesia
  • Endro Junianto Research Center for Smart Mechatronics, National Research and Innovation Agency, Bandung 40135, Indonesia
  • Edy Riyanto Research Center for Advanced Materials, National Research and Innovation Agency, Serpong 15314, Indonesia
Keywords: termal-spray coating, high-velocity oxy-fuel coating, ceramic-metal material, Cr3C2–NiCr coating

Abstract

With the goals of protecting boiler tubes from hostile surroundings, increasing thermal efficiency, and minimizing time losses from damage, thermal-spray coating methods for high-temperature operations were created. Ceramic-metal composite materials (e.g., Cr3C2-NiCr) are well known for protecting components from erosion decay in a high-temperature environment. In this investigation, the high-velocity oxy-fuel (HVOF) thermal-spray technique was employed to successfully deposit several variations of feedstocks containing Cr3C2-NiCr and NiCr powders onto a medium-carbon steel substrate, with and without filtering through a 400-mesh screen. Utilizing X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the microstructure features of the deposited coatings were assessed. The experiment results demonstrate that the crystallite and grain sizes of the deposited coatings can be increased by reducing the powder size through a sifting process using a 400-mesh sieve. This procedure also resulted in a coating with a higher density and lower porosity. Furthermore, new compounds including Cr2O3 and MnCr2O4 were formed in the coating layers as indicated by the XRD spectra. These phenomena are in good agreement with the EDS mapping of Cr and O, which reveals highly similar distributions. Manganese was originally a part of the substrate composition. Manganese could diffuse rapidly across the Cr2O3 layer and form the MnCr2O4 compound, indicating the manganese diffusion from the substrate into the Cr3C2-NiCr coating. The formation of MnCr2O4 can be attributed to the prior emergence of the Cr2O3 compound.

References

[1] V. Matikainen, S.R. Peregrina, N. Ojala, H. Koivuluoto, J. Schubert, Š. Houdková, P. Vuoristo, Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes, Surf. Coat. Technol., 370 (2019) 196-212, doi:10.1016/j.surfcoat.2019.04.067.
[2] S. Hong, Y. Wu, W. Gao, J. Zhang, Y. Zheng, Y. Zheng, Slurry erosion-corrosion resistance and microbial corrosion electrochemical characteristics of HVOF sprayed WC-10Co-4Cr coating for offshore hydraulic machinery, Int. J. Refract. Met. Hard Mater., 74 (2018) 7-13, doi:10.1016/j.ijrmhm.2018.02.019.
[3] S. Septianissa, B. Prawara, E.A. Basuki, E. Martides, E. Riyanto, Improving the hot corrosion resistance of γ/γ’ in Fe-Ni superalloy coated with Cr3C2-20NiCr and NiCrAlY using HVOF thermal spray coating, Int. J. Electrochem. Sci., 17 (2022) 221231, doi:10.20964/2022.12.27.
[4] J.A. Picas, S. Menargues, E. Martin, M.T. Baile, Cobalt free metallic binders for HVOF thermal sprayed wear resistant coatings, Surf. Coat. Technol., 456 (2023) 129243, doi:10.1016/j.surfcoat.2023.129243.
[5] S. Singh, K. Goyal, R. Bhatia, A review on protection of boiler tube steels with thermal spray coatings from hot corrosion, Mater. Today Proc., 56 (2022) 379-383, doi:10.1016/j.matpr.2022.01.219.
[6] N. Vashishtha, S.G. Sapate, Abrasive wear maps for high velocity oxy fuel (HVOF) sprayed WC-12Co and Cr3C2-25NiCr coatings, Tribol. Int., 114 (2017) 290-305, doi:10.1016/j.triboint.2017.04.037.
[7] V. Matikainen, H. Koivuluoto, P. Vuoristo, A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance, Wear, 446-447 (2020) 203188, doi:0.1016/j.wear.2020.203188.
[8] X. Zhang, F. Li, Y. Li, Q. Lu, Z. Li, Haiyang Lu, Xueju Ran, Xiaoxia Qi, Comparison on multi-angle erosion behavior and mechanism of Cr3C2-NiCr coatings sprayed by SPS and HVOF, Surf. Coat. Technol., 403 (2020) 126366, doi:10.1016/j.surfcoat.2020.126366.
[9] V. Matikainen, G. Bolelli, H. Koivuluoto, P. Sassatelli, L. Lusvarghi, P. Vuoristo, Sliding wear behavior of HVOF and HVAF sprayed Cr3C2-based coatings, Wear, 388-389 (2017) 57-71, doi:10.1016/j.wear.2017.04.001.
[10] J.A. Picas, M. Punset, E. Rupérez, S. Menargues, E. Martin, M.T. Baile, Corrosion mechanism of HVOF thermal sprayed WC-CoCr coatings in acidic chloride media, Surf. Coat. Technol., 371 (2019) 378-388, doi:10.1016/j.surfcoat.2018.10.025.
[11] G. Bolelli, V. Cannillo, L. Lusvarghi, S. Ricco, Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings, Surf. Coat. Technol., 200 (2006) 2995-3009, doi:10.1016/j.surfcoat.2005.04.057.
[12] J.R. Davis, Handbook of thermal spray technology, ASM International, Materials Park, Ohio 2004, 47 – 56.
[13] B. Pratap, V. Bhatt, V. Chaudhary, A Review on thermal spray coating, Int. J. Eng. Res., 10 (2015) 25474-25481.
[14] N.F. Ak, C. Tekmen, I. Ozdemir, H.S. Soykan, E. Celik, NiCr coatings on stainless steel by HVOF technique, J. Surf. Coat. Technol., 174-175 (2003) 1070 – 1073, doi:10.1016/S0257-8972(03)00367-0.
[15] N. Abu-Warda, G. Boissonnet, A.J. López, F. Pedraza, Analysis of thermos-physical properties of NiCr coatings on T24, T92, VM12 and AISI 304 steels, Surf. Coat. Technol., 416 (2021) 127163, doi:10.1016/j.surfcoat.2021.127163.
[16] J.A. Picas, A. Forn, R. Rilla, E. Martin, HVOF thermal sprayed coatings on aluminium alloy and aluminium matrix composites, J. Surf. Coat. Technol., 200 (2005) 1178 – 1181, doi:10.1016/j.surfcoat.2005.02.124.
[17] S. Matthews, M. Bhagvandas, L.-M. Berger, Creation of modified Cr3C2-NiCr hardmetal coating microstructures through novel processing, J. Alloys Compd., 824 (2020) 153868, doi:10.1016/j.jallcom.2020.153868.
[18] ASME SA-210/SA-210M, Standard Specification for seamless medium-carbon steel boiler and superheater tubes. The American Society of Mechanical Engineering, New York 2019, 279-284.
[19] M. Oksa, J. Metsajoki, Optimizing NiCr and FeCr HVOF coating structures for high temperature corrosion protection applications, J. Therm. Spray Technol., 24 (2015) 436 – 453, doi:10.1007/s11666-014-0192-0.
[20] J. He, M. Ice, E. Lavernia, Particle melting behaviour during high-velocity oxygen fuel thermal spraying, J. Therm. Spray Technol., 10 (2001) 83 – 93, doi:10.1361/105996301770349547.
[21] V.V. Sobolev, J.M. Guilemany, A.J. Martin, Flattening of Composite Powder Particles during Thermal Spraying, J. Therm. Spray Technol., 6 (1997) 353 – 360, doi:10.1007/s11666-997-0070-0.
[22] R.S. Neiser, M.F. Smith, R.C. Dykhuizen, Oxidation in wire HVOF sprayed steel, J. Therm. Spray Technol., 7 (1998) 537 – 545, doi:10.1361/105996398770350765.
[23] G.C. Ji, C.J. Li, Y.Y. Wang, W.Y. Li, Erotion Performance of HVOF-Sprayed Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 16 (2007) 557 – 565, doi:10.1007/s11666-007-9052-5.
[24] W.D. Callister, Material Science and Engineering an Introduction, John Wiley and Sons, Inc., New York 2007.
[25] V.V. Sobolev, J.M. Guilemany, Analysis of coating gas porosity development during thermal spraying, Surf. Coat. Technol., 70 (1994) 57-68, doi:10.1016/0257-8972(94)90075-2.
[26] V.V. Sobolev, J.M. Guilemany, Investigation of coating porosity formation during high velocity oxy-fuel (HVOF) spraying, Mater. Lett., 18 (1994) 304-308, doi:10.1016/0167-577X(94)90012-4.
[27] K. Premkumar, K.R. Balasubramanian, Evaluation of cyclic oxidation behavior and mechanical properties of nanocrystalline composite HVOF coatings on SA 210 grade C material, J. Eng. Fail. Anal., 97 (2019) 635 – 644, doi:10.1016/j.engfailanal.2019.01.038.
[28] J. Robertson, M.I. Manning, Healing layer formation in Fe–Cr–Si ferritic steels, Mater. Sci. Technol., 5 (1989) 741 – 753, doi:10.1179/mst.1989.5.8.741.
[29] T. Sundararajan, S. Kuroda, K. Nishida, T. Itagaki, F. Abe, Behaviour of Mn and Si in the spray powders during steam oxidation of Ni–Cr thermal spray coatings, ISIJ Int., 44 (2004) 139 – 144, doi:10.2355/ISIJINTERNATIONAL.44.139.
[30] F.H. Stott, F.I. Wei, C.A. Enahoro, The influence of manganese on the High‐temperature oxidation of iron‐chromium alloys, Corros. Mater., 40 (1989) 198 – 205, doi:10.1002/maco.19890400403.
[31] S. Kumar, M. Kumar, A. Handa, Comparative study of high temperature oxidation behavior and mechanical properties of wire arc sprayed Ni-Cr and Ni-Al coatings, Eng. Fail. Anal., 106 (2019) 104173, doi:10.1016/j.engfailanal.2019.104173.
[32] F.H. Stott, G.C. Wood, Internal oxidation, Mater. Sci. Technol., 4 (1988) 1072, doi:10.1179/mst.1988.4.12.1072.
[33] Bhushan, B. dan Gupta, B.K., Handbook of Tribology: Materials, Coatings, and Surface Treatments, McGraw-Hill, New York 1991.
[34] G.B. Sucharski, A.G.M. Pukasiewicz, R.F. Vaz, R.S.C. Paredes, Optimization of the deposition parameters of HVOF FeMnCrSi+Ni+B thermally sprayed coatings, Soldag. Insp., 20 (2015) 238 – 252, doi:10.1590/0104-9224/SI2002.11.
[35] V.V. Sobolev, J.M. Guilemany, Effect of oxidation on droplet flattening and splat-substrate interaction in thermal spray, J. Therm. Spray Technol., 8 (1999) 523 – 530, doi:10.1361/105996399770350205.
Published
2024-04-02
How to Cite
1.
LauzuardyJ, Agus BasukiE, MartidesE, SeptianissaS, PrawaraB, Dedi, JuniantoE, Riyanto E. MICROSTRUCTURE CHARACTERISTICS OF Cr3C2-NiCr COATINGS DEPOSITED WITH THE HIGH-VELOCITY OXY-FUEL THERMAL-SPRAY TECHNIQUE. MatTech [Internet]. 2024Apr.2 [cited 2024May18];58(2):137–145. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/869