INFLUENCE OF THE THERMAL CONDITION OF STEEL ON THE TRANSFORMATION TEMPERATURES OF TWO CHROMIUM HOT-WORK TOOL STEELS
Abstract
The influence of the thermal condition of the steel on the transformation temperatures of two chromium hot-work tool steels was investigated. The steels studied were in two different thermal states: the soft -annealed state and the hardened-and-tempered state. The soft-annealed condition, i.e., the fully annealed condition, is a thermal state of steels in which the matrix is ferritic, and the carbon is chemically bonded in spherical carbides. The hardened-and-tempered condition, on the other hand, means a fully hardened-and-tempered martensitic matrix with uniformly distributed (primary and secondary) carbides. The samples were analysed in a simultaneous thermal analyser (STA) using the differential scanning calorimetry (DSC) method to determine the transformation temperatures. We also performed calculations based on the CALPHAD method to obtain the equilibrium temperatures of the transformations. The aim of the study was to determine the influence of different thermal conditions of chromium hot-work tool steels on the transformation temperatures such as solidus/liquidus temperatures, eutectoid transformation temperatures (A1 and A3), austenite solidification temperature and martensite transformation start temperatures. Since DSC analysis also measures thermal influence, we were able to determine the energies absorbed during eutectoid transformation and melting (endothermic processes) and the energies released during the solidification of δ-ferrite and γ-austenite (exothermic processes), as well as the energies released during martensite transformation. It was found that hardening and tempering reduce both eutectoid transformation temperatures and that the solidification intervals are closer to those calculated. From an energetic point of view, hardening and tempering reduce the energies absorbed during melting.
References
2 C. R. Sohar, Lifetime controlling defects in tool steels, Springer, Berlin 2011, 224
3 R. A. Mesquita, Tool steels: properties and performance, CRC Press, Boca Raton 2016, 245
4 ASM handbook, volume 1: Properties and selection: irons, steels, and high-performance alloys, ASM International, Materials Park 1990, 1063
5 W. F. Hosford, Iron and Steel, Cambridge University Press, Cambridge 2012, 310
6 Heat Treater’s Guide: Practices and Procedures for Irons and Steels, ASM International, Metals Park 1995, 904
7 C. Højerslev, Tool steels, Risø National Laboratory, Roskilde 2001, 25, http://orbit.dtu.dk/files/7728903/ris_r_1244.pdf, January 2021
8 J. Sjöström, Chromium martensitic hot-work tool steels - damage, performance and microstructure, Doctoral thesis, Karlstad University, 2004, 53, http://www.diva-portal.org/smash/get/diva2:24899/FULLTEXT01.pdf, 21.01.2013
9 G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Materials Park 2015, 682
10 G. E. Totten, Steel Heat Treatment: Metallurgy and Technologies, CRC Press, Boca Raton 2006, 848
11 G. N. Haidemenopoulos, Physical Metallurgy: Principles and Design, CRC Press, Boca Raton 2018, 476
12 Q. Zhou, X. Wu, N. Shi, J. Li, N. Min, Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering, Mater. Sci. Eng. A, 528 (2011) 18, 5696–5700, doi:10.1016/j.msea.2011.04.024
13 A. Medvedeva, J. Bergström, S. Gunnarsson, J. Andersson, High-temperature properties and microstructural stability of hot-work tool steels, Mater. Sci. Eng. A, 523 (2009) 1–2, 39–46, doi:10.1016/j.msea.2009.06.010
14 Z. Zhang, D. Delagnes, G. Bernhart, Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements, Mater. Sci. Eng. A, 380 (2004) 1, 222–230, doi:10.1016/j.msea.2004.03.067
15 N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, C. Levaillant, Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel, Mater. Sci. Eng. A, 387–389 (2004), 1-2, 171–175, doi:10.1016/j.msea.2004.02.073
16 A. Jilg, T. Seifert, Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening, Mater. Sci. Eng. A, 721 (2018), 96–102, doi:10.1016/j.msea.2018.02.048
17 D. Caliskanoglu, I. Siller, R. Ebner, H. Leitner, F. Jeglitsch, W. Waldhauser, Thermal Fatigue and Softening Behavior of Hot Work Tool Steels, Proc. 6th Int. Tool. Conf., Karlstad 2002, 707–719
18 R. Markežič, N. Mole, I. Naglič, R. Šturm, Time and temperature dependent softening of H11 hot-work tool steel and definition of an anisothermal tempering kinetic model, Mater. Today Commun., 22 (2020), 1–7, doi:10.1016/j.mtcomm.2019.100744
19 S. Kheirandish, H. Saghafian, J. Hedjazi, M. Momeni, Effect of heat treatment on microstructure of modified cast AISI D3 cold work tool steel, J. Iron Steel Res. Int., 17 (2010), 40–45, doi:10.1016/S1006-706X(10)60140-9
20 C. J. Chen, K. Yan, L. Qin, M. Zhang, X. Wang, T. Zou, Z. Hu, Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel, J. Mater. Eng. Perform., 26 (2017) 11, 5577–5589, doi:10.1007/s11665-017-2992-0
21 M. Priyadarshini, A. Behera, C. K. Biswas, D. K. Rajak, Experimental Analysis and Mechanical Characterization of AISI P20 Tool Steel Through Heat-Treatment Process, J. Bio- Tribo-Corrosion, 8 (2022) 1, 1–10, doi:10.1007/s40735-021-00607-3
22 F. Huber, C. Bischof, O. Hentschel, J. Heberle, J. Zettl, K. Y. Nagulin, M. Schmidt, Laser beam melting and heat-treatment of 1.2343 (AISI H11) tool steel – microstructure and mechanical properties, Mater. Sci. Eng. A, 742 (2018), 109–115, doi:10.1016/j.msea.2018.11.001
23 I. Souki, D. Delagnes, P. Lours, Influence of heat treatment on the fracture toughness and crack propagation in 5% Cr martensitic steel, Procedia Eng., 10 (2011), 631–637, doi:10.1016/j.proeng.2011.04.105
24 N. B. Dhokey, S. S. Maske, P. Ghosh, Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel (H13), Mater. Today Proc., 43 (2021), 3006–3013, doi:10.1016/j.matpr.2021.01.361
25 W. R. Prudente, J. F. C. Lins, R. P. Siqueira, P. S. N. Mendes, R. E. Pereira, Microstructural evolution under tempering heat treatment in AISI H13 hot-work tool steel, Int. J. Eng. Res. Appl., 7 (2017) 4, 67–71, doi:10.9790/9622-0704046771
26 T. Balaško, M. Vončina, J. Burja, J. Medved, Influence of Heat Treatment on the High-Temperature Oxidation Behaviour of Chromium-Molybdenum-Vanadium Alloyed Hot-Work Tool Steel, Mater. Tehnol., 56 (2022) 2, 233–241, doi:10.17222/mit.2022.406
27 T. Balaško, M. Vončina, J. Medved, Simultaneous thermal analysis of the high‑temperature oxidation behaviour of three hot‑work tool steels, J. Therm. Anal. Calorim., 148 (2022), 1251–1264, doi:10.1007/s10973-022-11616-w
28 T. Balaško, M. Vončina, J. Burja, B. Š. Batič, J. Medved, High-temperature oxidation behaviour of AISI H11 tool steel, Metals, 11 (2021) 5, doi:10.3390/met11050758
29 T. Balaško, M. Vončina, J. Burja, B. Š. Batič, High‑Temperature Oxidation Behavior of Tool Steel with Increased Thermal Conductivity, Oxid. Met., 98 (2022), 135–161, doi:10.1007/s11085-022-10119-1
30 K. Grabnar, J. Burja, T. Balaško, A. Nagode, J. Medved, THE INFLUENCE OF Nb, Ta AND Ti MODIFICATION ON HOT-WORK TOOL-STEEL GRAIN GROWTH DURING AUSTENITIZATION, Mater. Tehnol., 56 (2022) 3, 331–338, doi:10.17222/mit.2022.486
31 E. Kaschnitz, P. Hofer-Hauser, W. Funk, Electrical resistivity measured by millisecond pulse-heating in comparison to thermal conductivity of the hot work tool steel AISI H11 (1.2343) at elevated temperature, High Temp. - High Press., 49 (2020) 1–2, 75–87, doi:10.32908/hthp.v49.825
32 T. Balaško, J. Burja, J. Medved, Effect of Ni on solidification of duplex low-density steels, J. Therm. Anal. Calorim., 142 (2020) 5, 1605–1611, doi:10.1007/s10973-020-10254-4
33 E. Wielgosz, T. Kargul, Differential scanning calorimetry study of peritectic steel grades, J. Therm. Anal. Calorim., 119 (2015) 3, 1547–1553, doi:10.1007/s10973-014-4302-5
34 B. Smetana, M. Žaludová, S. Zlá, J. Dobrovská, M. Cagala, I. Szurman, D. Petlák, Application of high temperature DTA technique to Fe based systems, Proc. of the 19th Int. Metallurgical and Materials Conference, Roznov pod Radhostem 2010. 357–362
35 B. Smetana, S. Zlá, J. Dobrovská, P. Kozelsky, Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA, Int. J. Mater. Res., 101 (2010) 3, 398–408, doi:10.3139/146.110283