EFFECT OF CYCLIC NaCl SOLUTION IMMERSION CURING ON THE MECHANICAL PROPERTIES OF PLAIN CONCRETE

  • Wei He Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Shoujun Wu Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling Shaanxi, People’s Republic of China
  • Bo Zhang College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Yiming Luo College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Yanyu Liu College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Guo Fu College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
Keywords: concrete, microstructure, phase compositions, mechanical property, curing, NaCl solution

Abstract

The effects of cyclic curing (CC) alternating between NaCl solution immersion and drying for 28 d on the microstructure, phase composition and mechanical properties of ordinary concrete are studied in comparison with those cured by standard curing using municipal water. Compared to standard curing, CC enhances the compressive strength, flexural strength and static compressive elastic modulus of concrete by (5.71, 11.14 and 8.06) %, respectively. Ca(OH)2 is significantly reduced, while C-S-H is increased, and a minor amount of 3Ca(OH)2·CaCl2·12H2O is formed. Hydration products become finer, more uniform and denser. The use of CC is proposed as it improves the strength.

References

1 P.J. Monteiro, S.A. Miller, A. Horvath, Towards sustainable concrete, Nat. Mater., 16 (2017) 698–699, doi:10.1038/nmat4930
2 M. Boukendakdji, M. Touahmia, B. Achour, G. Albaqawy, E. Noaime, The effects of steam-curing on the properties of concrete. Eng. Technol. Appl. Sci., 11(2021) 6974–6978, doi:10.48084/etasr.4014
3 M.S. Raza, H. Kumar, K. Rai, D. Kumar, N.D. Bheel, Effect of various curing methods and curing ages on compressive strength of plain concrete, Quest R. J., 18 (2021) 29–32, https://doi.org/10.52584/QRJ.1802.04
4 I. Bali, W. Kurnia. The curing method influence on mechanical behavior of reactive powder concrete, Int. J. Adv. Sci. Eng. Inform. Technol., 8 (2018) 1976–1983, doi:10.18517/ijaseit.8.5.4197
5 F.K.N. Gabriel-Wettey, K. Appiadu-Boakye, F, Anewuoh, Impact of curing methods on the porosity and compressive strength of concrete, J. Eng. Res. Rep. 20 (2021) 18–30, doi:10.9734/jerr/2021/v20i917371
6 V. Gokulanathan, K. Arun, P. Priyadharshini, Fresh and hardened properties of five non-potable water mixed and cured concrete: A comprehensive review, Construct. Build. Mater., 309 (2021) 125089, doi:10.1016/j.conbuildmat.2021.125089
7 M. Narmatha, P. Arulraj, J.A. Bari, Effect of magnetic water treatment for mixing and curing on structural concrete, Materials Today: Proc., 37 (2020) 671–676, doi:10.1016/j.matpr.2020.05.633
8 British Standards Institution, BS EN 1008-2002, Mixing water for concrete—specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete, 2002.
9 ASTM International, ASTM C1602/C1602M–12, Standard specification for mixing water used in the production of hydraulic cement concrete, 2012.
10 American Concrete Institute, ACI 308.1M-11, Standard specification for curing concrete, 2011.
11 ASTM International, ASTM C31/C31M-21a, Standard practice for making and curing concrete test specimens in the field, 2021.
12 MOCPRC (Ministry of Construction of the People’s Republic of China), JGJ 63-2006, Standard of water for concrete, 2006.
13 Y. Bo, C. L. Liu, P. C. Jiao, Y. Z. Chen, Y. T. Cao, Hydrochemical characteristics and controlling factors for waters' chemical composition in the Tarim Basin, Western China, Chemie Der Erde. 73, (2013) 343–356, doi:10.1016/j.chemer.2013.06.003
14 B.L. Cui, X.Y. Li, X.H. Wei, Isotope and hydrochemistry reveal evolutionary processes of lake water in Qinghai Lake, J. Great Lakes Res., 42 (2016) 580–587, doi:10.1016/j.jglr.2016.02.007
15 W.Y. Liu, J. Li, W.J. Gu, L.F.E.D. Santos, J. Boman, X.Y. Zhang, M.G. Tang, S. Wang, X.R. Kong, Chemical and hygroscopic characterization of surface salts in the Qaidam Basin: implications for climate impacts on planet earth and mars, ACS Earth Space Chem., 5 (2021) 651–662, doi:10.1021/acsearthspacechem.0c00339
16 F. M. Althoey, Y. Farnam. An advanced understanding of the source of the chemical damage in concrete pavement exposed to sodium chloride deicing salt. 11th Uniersity Transportation Centers Spotlight Conference, Rebuilding and Retrofitting The Transportation Infrastructure, doi:10.13140/RG.2.2.22330.90566
17 H. Haynes, R. O’Neill, M. Neff, P.K. Mehta, Salt weathering of concrete by sodium carbonate and sodium chloride, ACI Mater. J., 107 (2010) 258–266, doi:10.1002/tal.614.
18 T.A. Østnor, H. Justnes, Anodic corrosion inhibitors against chloride induced corrosion of concrete rebars, Adv. Appl. Ceram.,110 (2011) 131–136, doi:10.1179/1743676110Y.0000000017
19 K. Peterson, G. Julio-Betancourt, L. Sutter, R.D. Hooton, D. Johnston, Observations of chloride ingress and calcium oxychloride formation in laboratory concrete and mortar at 5 °C, Cem. Concr. Compos., 45 (2013) 79–90, doi:10.1016/j.cemconres.2013.01.001
20 W. Yi, T. Ueda, F.Y. Gong, D.W. Zhang, Meso-scale mechanical deterioration of mortar due to sodium chloride attack, Construct. Build. Mater., 249 (2019) 163–173, doi:10.1016/j.cemconcomp.2018.11.021
21 P.R. Li, W.G. Li, T. Yu, F.L. Qu, V.W.Y. Tam, Investigation on early-age hydration, mechanical properties and microstructure of seawater sea sand cement mortar, Construct. Build. Mater., 249 (2020) 118776, doi:10.1016/j.conbuildmat.2020.118776
22 A. Younis, U. Ebead, P. Suraneni, A. Nanni, Fresh and hardened properties of seawater-mixed concrete, Construct. Build. Mater., 190 (2018) 276–286, doi:10.1016/j.conbuildmat.2018.09.126
23 M. Abdulhadi, X.Z. Wang, S. Labbo, Comparative study on the effect of sodium chloride NaCl solution as curing medium of basalt, polypropylene and steel fiber reinforced concrete on compressive strength, Int. J. Eng. Sci. Comp., 6 (2016) 4750–4756, doi:10.4010/2016.1180.
24 O.A. Agbede, O.T. Akanbi, G.O. Oluokun, J.A. Alomaja, Effects of varying concentrations of chloride (sodium chloride) on the compressive strength of laterized concrete, Int. J. Adv. Res. Eng. Manag., 2 (2016) 43–48, https://www.researchgate.net/publication/309761895
25 C.Y. Qiao, W. Ni, Q.H. Wang, J. Weiss, Chloride diffusion and wicking in concrete exposed to NaCl and MgCl2 solutions, J. Mater. Civil Eng., 30 (2018) 04018015, doi:10.1061/(ASCE)MT.1943-5533.0002192
26 G. Richards, M.H. Shehata, Effects of curing method on properties and salt-scaling resistance of concrete under lab testing, J. Mater. Civil Eng., 32 (2020) 04020222, doi:10.1061/(ASCE)MT.1943-5533.0003297
27 O.R. Ogirigbo, O.M. Durojaye, Effect of alternate wetting and drying on some properties of high strength concrete in tropical coastal environments, Nigerian J. Environ. Sci. Technol., 4 (2020) 172–181, doi:10.36263/nijest.2020.01.0189
28 S. Garrault, T. Behr, A. Nonat, Formation of the C-S-H Layer during early hydration of tricalcium silicate grains with different sizes, J. Phys. Chem. B, 110 (2006) 270–275, doi:10.1021/jp0547212
29 X.Y. Pang, L.J. Sun, F. Sun, G. Zhang, S.L. Guo, Y.H. Bu, Cement hydration kinetics study in the temperature range from 15 °C to 95 °C, Cem. Concr. Res., 148 (2021) 106552, doi:10.1016/j.cemconres.2021.106552
30 X.Y. Pang, L.J. Sun, M. Chen, M. Xian, G.D. Cheng, Y. Liu, J.K. Qin, Influence of curing temperature on the hydration and strength development of class G portland cement, Cem. Concr. Res., 156 (2022) 106776, doi:10.1016/j.cemconres.2022.106776
31 A.M. Rosenberg, Study of the mechanism through which calcium chloride accelerates the set of portland cement, ACI J. Proc., 61 (1964) 1261–1270, doi:10.14359/7826
32 R. Fernández, A.I. Ruiz, J. Cuevas, Formation of C-A-S-H phases from the interaction between concrete or cement and bentonite, Clay Miner., 51 (2016) 223–235, doi:10.1180/claymin.2016.051.2.09
33 V. Baroghel-Bouny, X. Wang, M. Thiery, M. Saillio, F. Barberonm, Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis, Cem. Concr. Res., 42 (2012) 1207–1224, doi:10.1016/j.cemconres.2012.05.008
34 H. Viallis, P. Faucon, J.-C. Petit, A. Nonat, Interaction between Salts (NaCl, CsCl) and Calcium Silicate Hydrates (C-S-H), J. Phys. Chem. B, 103 (25) (1999) 5212–5219, doi:10.1021/jp983757+
35 Y. Farnam, S. Dickm, A. Wiese, J. Davis, D. Bentz, J. Weiss, The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials, Cem. Concr. Compos., 64 (2016) 1–15, doi:10.1016/j.cemconcomp.2015.09.006
Published
2024-04-03
How to Cite
1.
He W, Wu S, Zhang B, Luo Y, Liu Y, Fu G. EFFECT OF CYCLIC NaCl SOLUTION IMMERSION CURING ON THE MECHANICAL PROPERTIES OF PLAIN CONCRETE. MatTech [Internet]. 2024Apr.3 [cited 2024Dec.10];58(2):165–171. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/794