PREPARATION AND HARDNESS OF A FUNCTIONALLY GRADED Ni-Al COATING

  • Ningning Li North China University of Water Resources and Electric Power, Zhengzhou
  • Lei Xu School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
  • Liang Huang School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
  • Yuping Tong School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
  • Zhengquan Jiang School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
  • Keliang Li School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
Keywords: Ni2Al3 coating, nanoindentation, hardness, gradient

Abstract

A functionally graded Ni-Al coating can improve the hardness of low-carbon steel, which can then adapt to various conditions due to a high hardness. The primary purpose of this research was the preparation of a Ni-Al coating by adopting a two-step method including nickel plating and pack aluminizing. The coating phase and morphology were characterized with XRD, SEM and EDS. Subsequently, the hardness of the Ni-Al coating was measured using a nanoindentation test. The results show that different aluminum contents in the coating surface lead to different coating phases, mainly Ni2Al3. The change in the coating phases conformed to the Ni-Al binary phase diagram. The Ni-Al coating showed a continuous gradient structure and composition. In addition, the coating also showed continuous gradient variation, relating to the hardness.

 

References

1 Y. Tang, Z. S. Ma, Q. Ding, T. Wang, Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis, Compos. Struct., 264 (2021) 8, 113746, doi:10.1016/j.compstruct.2021.113746

2 M. J. Yu, A. X. Feng, L. J. Yang, M. E. Thomas, Microstructure and corrosion behaviour of 316L-IN625 functionally graded materials via laser metal deposition, Corros. Sci., 193 (2021), 109876, doi:10.1016/j.cors ci.2021.109876

3 S. Chandrasekaran, S. Hari, M. Amirthalingam, Functionally graded materials for marine risers by additive manufacturing for high-temperature applications: Experimental investigations, Structures, 35 (2022), 931938, doi:10.1 016/j.istruc.2021.12.004

4 E. Damerchi, A. Abdollah-zadeh, R. Poursalehi, M. S. Mehr, Effects of functionally graded TiN layer and deposition temperature on the structure and surface properties of TiCN coating deposited on plasma nitrided H13 steel by PACVD method, J. Alloy. Compd., 772 (2019), 612624, doi: 10.1016/j.jall com.2018.09.083

5 T. J. Levingstone, N. Barron, M. Ardhaoui, K. Benyounis, L. Looney, J. Stokes, Application of response surface methodology in the design of functionally graded plasma sprayed hydroxyapatite coatings, Surf. Coat. Tech., 313 (2017), 307318, doi:10.1016/j.surfcoat.2017.01.113

6 R. R. Behera, A. Hasan, M. R. Sankar, L. M. Pandey, Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility, Surf. Coat. Tech., 352 (2018), doi: 10.1016/j.surfcoat.2018.08.044

7X. Z. Fan, L. Zhu, W. Z. Huang, Investigation of NiAl intermetallic compound as bond coat for thermal barrier coatings on Mg alloy, J. Alloy. Compd., 729 (2017), 617626, doi:10.1016/j.jallcom.2017.09.190

8 X. Chen, C. Li, S. J. Xu, Y. Hu, G. C. Ji, H. T. Wang, Microstructure and Microhardness of Ni/Al-TiB2 composite coatings prepared by cold spraying combined with postannealing treatment, Coatings., 9 (2019) 9, 565, doi:10.3390 /coatings9090565

9 X. X. Zhao, X. M. Li, M. F. Li, C. G. Zhou, Comparison of the corrosion resistance of Ni2Al3 coating with and without Ni-Re interlayer in dry and wet CO2 gas, Corros. Sci., 159 (2019), 108121, doi:10.1016/j.corsci. 2019. 108121

10 Y. D. Wang, Y. P. Zhang, G. Liang, Q. L.Ding, Low temperature formation of aluminide coatings on the electrodeposited nanocrystalline Ni and its oxidation resistance with La2O3/CeO2 nanoparticle dispersion, Vacuum, 173 (2020), 109148, doi:10.1016/j.vacuum.2019.109148

11 Y. T. Zhao, Z. H. Tian, B. B. Li, H. P. Ren, Effect of rare earth(CeCl3) on oxidation resistance of Ni2Al3/Ni composite coatings on heat-resistant steel, Rare. Metal. Mat. Eng., 48 (2019) 11, 34523432, doi:CNKI: SUN: COS E.0.2019-11-002

12 X. M. Yuan, H. G. Yang, W. W. Zhao, Q. Zhan, X. X. Zhu, Study on pack cementation process for preparation of low activity pack aluminizing layer on RAFM steel, Mat. Rev., 29 (2015), 6668, doi:10.1530/acta.0.0570 557

13 A. Thevand, S. Poize, J. P. Crousier, R. Streiff, Aluminization of nickel-formation of intermetallic phases and Ni2Al3 coatings, J. Mater. Sci., 16 (1981), 24672479, doi:10.1007/BF01113583

14 L. Chitsaz-Khoyi, J. Khalil-Allafi, A. Motallebzadeh, M. Etminanfar, The effect of hydroxyapatite nanoparticles on electrochemical and mechanical performance of TiC/N coating fabricated by plasma electrolytic saturation method, Surf. Coat. Tech., 394 (2020), 125817, doi:10.1016/j.surfcoat.2020.125817

15 H. H. Ding, V. Fridrici, G. Guillonneau, S. Sao-Joao, J. Fontaine, P. Kapsa, Investigation on mechanical properties of tribofilm formed on Ti–6Al–4V surface sliding against a DLC coating by nano-indentation and micro-pillar compression techniques, Wear, 432433 (2019), 202954, doi:10.1016/j.wear.2019.202954

16 H. Y. Lee, J. H. Lee, Evaluation of material characteristics by micro/nano indentation tests, T. Kor. Soc. Mec. Eng. A., 32 (2008) 10, 805816, doi:10.3795/KSME-A.2008.32.10.805

17 R. Yang, T. H. Zhang, P. Jiang, Y. L. Bai, Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett., 92 (2008) 23, 1906, doi:10.1063/1.2944138

18 X. Xiang, F. L Yang, G. K. Zhang, X. L. Wang, Effect of steel substrates on the formation and deuterium permeation resistance of aluminide coatings, Coatings, 9 (2019) 2, 95, doi: doi:10.3390/coatings9020095

19 F. Shahriari, F. Ashrafizadeh, A. Saatchi, Formation and characterisation of NiAl-Ti coating on nickel-based superalloy B1900, Surf. Interface Anal., 41 (2009) 5, 378383, doi:10.1002/sia.3031

20 H. Rafiee, S. Rastegari, H. Arabi, M. Mojaddam, Effects of temperature and Al-concentration on formation mechanism of an aluminide coating applied on superalloy IN738LC through a single step low activity gas diffusion process, J. Alloy. Compd., 7 (2010) 4, 4249, doi:10.1016/j.jallcom.2010.06.030

Published
2023-01-25
How to Cite
1.
Li N, XuL, HuangL, TongY, JiangZ, LiK. PREPARATION AND HARDNESS OF A FUNCTIONALLY GRADED Ni-Al COATING . MatTech [Internet]. 2023Jan.25 [cited 2024May28];57(1):27–33. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/650