DYNAMIC COMPRESSIVE PROPERTIES OF ALUMINIUM-MATRIX COMPOSITES REINFORCED WITH SiC PARTICLES
Abstract
The aluminium-matrix composites (AMCs) consisted of (5, 10 and 15) x/% SiC particles (SiCp) in an aluminium alloy 7055 matrix. Specimens were taken from hot-press sintering. High-strain-rate tests were performed using the split-Hopkinson pressure bar (SHPB) method. The microstructures were observed with a scanning electron microscope (SEM) to understand the damage mechanisms of the SiCp/7055 Al composites at high strain rate. The SHPB test results show that the SiCp-reinforced composites are more sensitive to strain rate than the unreinforced material. The strain-rate sensitivity of the flow stress of these composites increases substantially with the increase of the strain rate. The flow stress of SiCp/7055Al composites with 10 x/% and 15 x/% SiCp at 3000 s–1 first increases and then decreases with the increase of the plastic strains, which was caused by the heat generated during adiabatic compression. Microstructure-characterization results show that SiCp cracking and SiCp/7055Al interface debonding are the main damage mechanisms of the composites. The SiCp volume fraction and strain rate affect the damage of composites during the dynamic compressive deformation of the SiCp /7055Al composites.
References
2 J. P. Davim, Machining of metal matrix composites, London: Spring, 2012.
3 Yashpal, Sumankant, C. S. Jawalkar, A. S. Verma, N. M. Suri, Fabrication of Aluminium Metal Matrix Composites with Particulate Reinforcement: A Review, Materials Today: Proceedings 4 (2017), 2927-2936, doi: 10.1016/j.matpr.2017.02.174.
4 B. S. Yigezu, P. K. Jha, M. M. Mahapatra, The Key Attributes of Synthesizing Ceramic Particulate Reinforced Al-Based Matrix Composites through Stir Casting Process: A Review, Materials and Manufacturing Processes, Processes, 28 (2013), 969-979, doi: 10.1080/10426914.2012.677909.
5 S. Yadav, D. R. Chichili, K. T. Ramesh, The mechanical response of a 6061-T6 Al/Al2O3 metal matrix composite at high rates of deformation, Acta metall, mater. 43 (1995) 12, 4453-4464, doi: 10.1016/0956-7151(95)00123-D.
6 X. G. Xue, L. J. Xie, T. Wang, Study on the constitutive model of SiCp/Al composites, Key Eng. Mater. 693 (2016), 621–628, doi: 10.4028/www.scientific.net/KEM.693.621.
7 Y. Li, K.T. Ramesh, E.S.C. Chin, The compressive viscoplastic response of an A359/SiCp metal–matrix composite and of the A359 aluminum alloy matrix, Int. J. Solids Struct. 37 (2000) 51, 7547-7562, doi: 10.1016/S0020-7683(99)00304-2.
8 A. Kalambur, I. W. Hall, Dynamic compressive behavior of a SiCw/Al composite, Scr. Mater., 37 (1997) 2, 193-198, doi: 10.1016/S1359-6462(97)00083-3.
9 D. F. Cao, W. C. She, L. S. Liu, P. C. Zhai, Q. J. Zhang, Effect of particle size on the dynamic mechanical behaviour and deformed microstructure of SiCp/Al composites, IOP. Conf. Ser.: Mater. Sci. Eng., 18 (2011) 20, 202014, doi: 10.1088/1757-899X/18/20/202014.
10 H. Lee, S. S. Sohn, C. Jeon, I. Jo, S. K. Lee, S. Lee, Dynamic compressive deformation behavior of SiC-particulate-reinforced A356 Al alloy matrix composites fabricated by liquid pressing process, Mater. Sci. Eng. A, 680 (2017), 368–377, doi: 10.1016/j.msea.2016.10.102.
11 H. Lee, J. H. Choi, M. C. Jo, D. Lee, S. Shin, I. Jo, S. K. Lee, S. Lee, Effects of SiC particulate size on dynamic compressive properties in 7075–T6 Al-SiCp composites, Mater. Sci. Eng. A, 738 (2018), 412-419, doi: 10.1016/j.msea.2018.09.082.
12 H. Lee, J. H. Choi, M. C. Jo, I. Jo, S. K. Lee, S. Lee, Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al–SiCp Composite, Met. Mater. Int., 24 (2018), 894-903, doi: 10.1007/s12540-018-0092-9.
13 W. Chen, B. Song, Split Hopkinson (Kolsky) Bar-Design, Testing and Applications, Springer, New York, 2011.
14 R. Gerlach, C. Kettenbeil, N. Petrinic, A new split Hopkinson tensile bar design, Int. J. Impact Eng. 50 (2012) 63-67, doi: 10.1016/j.ijimpeng.2012.08.004.
15 M. Kang, J. Park, S.S. Sohn, H. Kim, K. H. Kim, S. Lee, Adiabatic shear banding and cracking phenomena occurring during cold-forging simulation tests of plain carbon steel wire rods by using a split Hopkinsons pressure bar, Met. Mater. Int., 21 (2015) 991-999, doi: 10.1007/s12540-015-5252-6.
16 Z. H. Tan, B. J. Pang, B. Z. Gai, G. H. Wu, B. Jia, The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites, Materials Letters, 61 (2007) 4606-4609, doi: 10.1016/j.matlet.2007.02.069.
17 Z. H. Tan, B. J. Pang, D. T. Qin, J. Y. Shi, B. Z. Gai, The compressive properties of 2024Al matrix composites reinforced with high content SiC particles at various strain rates, Materials Science and Engineering A, 489 (2008) 302-309, doi: 10.1016/j.msea.2007.12.021.
18 T. Ye, L. Li, P. Guo, G. Xiao, Z. Chen, Effect of aging treatment on the microstructure and flow behavior of 6063 aluminum alloy compressed over a wide range of strain rate, Int. J. Impact Eng., 90 (2016), 72-80, doi: 10.1016/j.ijimpeng.2015.12.005.
19 Y. Yang, J. L. Wang, Y. D. Chen, H. B. Hu, Effect of strain rate on microstructural evolutions and thermal stability of 1050 commerical pure aluminum. Transactions of Nonferrous Metals Society of China, 28 (2018)1,1-8, doi: 10.1016/S1003-6326(18)64632-1.
20 S. Heilmann, D. KöBerlin, M. Merx , M.Jens, J. Zschetzsche, S. Ihlenfeldt, U. Füssel, Numerical and experimental analysis on the influence of surface layer on the resistance spot welding process for the aluminum alloys 5182 and 6016, Weld World, 63 (2019),1205–1220, doi: 10.1007/s40194-019-00743-y.
21 Y. S. Touloukian , E. H. Buyco, Thermophysical Properties of Matter - the TPRC Data Series, Vol. 5. Specific Heat - Nonmetallic Solids. 1970.
22 C. Zhou, G. Ji, Z. Chen, M. Wang, A. Addad, D. Schryvers, H Wang, Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications, Materials & Design, 63 (2014), 719-728, doi: 10.1016/j.matdes.2014.07.009.
23 W. Sun, C. Z. Duan, W. D. Yin, Development of a dynamic constitutive model with particle damage and thermal softening for Al/SiCp composites, Composite Structures, 236 (2020), 111856, doi: 10.1016/j.compstruct.2020.111856.
24 J. H. Hollomon, Tensile deformation, Trans. AIME, 162(1945), 268-290.
25 I. Tirtom, M. Guden, H. Yıldız, Simulation of the strain rate sensitive flow behavior of SiC-particulate reinforced aluminum metal matrix composites, Comput. Mater. Sci., 42 (2008), 570-578, doi: 10.1016/j.commatsci.2007.09.005.
26 C. S. Marchi, M. F. Cao, A. Kouleli, Mortensen, Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum, Mater. Sci. Eng. A, 337 (2002), 202-211, doi: 10.1016/S0921-5093(02)00035-7.
27 J. T. Zhang, H. J. Shi, M. C. Cai, L. S. Liu, P. C. Zhai, The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process, Mater. Sci. Eng. A, 527 (2009), 218-224, doi: 10.1016/j.msea.2009.08.067.
28 Y. Li, K.T. Ramesh, Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal–matrix composites at high rates of strain, Acta Mater, 46 (1998)16, 5633-5646, doi: 10.1016/S1359-6454(98)00250-X.