INVESTIGATION OF Ni-P COATED BAMBOO FIBRE/NANO-TiO2 POLYESTER MATRIX COMPOSITE PROPERTIES
Abstract
Natural-fibre-reinforced polymer composites are most commonly employed in the automotive, aerospace and structural industries. This research focuses on the synthesis and analysis of the dynamic properties of a bamboo fibre used with a polyester matrix in a nanocomposite produced with titanium oxide nanoparticles. Bamboo-fibre samples were prepared using the electroless plating method in both their uncoated and nickel-phosphorus-coated states. Bamboo-fibre contents of (4.5, 9, 13.5 and 18) w/% and nanoparticles of (0.5, 1, 1.5 and 2) w/% with and without the coating were examined for these qualities. Coated bamboo fibres were mixed with 13.5 w/% and 1.5 w/% of titanium oxide. It was concluded that dynamic and thermomechanical properties of the polyester matrix reinforced with bamboo fibres coated with nanoparticles allow excellent bonding as compared to the nanocomposite of the polyester matrix reinforced with uncoated bamboo fibres.
References
[2]. Saha, P.K. Introduction to composite materials for aerospace, Aerosp. Manuf. Process. (2016) 127–157, https://doi.org/10.1201/9781315367965-6.
[3]. Daramola, O.O., Akinwekomi, A.D., Adediran, A.A., Akindote-White, O., Sadiku, E.R.. Mechanical performance and water uptake behaviour of treated bamboo fibre-reinforced high-density polyethylene composites, Heliyon (2019) 5 (7) e02028.
[4]. Budhe, S., de Barros S., Banea MD. Theoretical assessment of the elastic modulus of natural fiber-based intra-ply hybrid composites. J Braz Soc Mech Sci Eng (2019) 41:1–10. https ://doi. org/10.1007/s4043 0-019-1766-z
[5]. Balaji, A., Sivaramakrishnan, K., Karthikeyan, B. Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites. J Braz Soc Mech Sci Eng. (2019) https ://doi.org/10.1007/s4043 0-019-1881x
[6]. Bernard, SS., Jayakumari, LS. Pressure and temperature sensitivity analysis of palm fiber as a biobased reinforcement material in brake pad. J Braz Soc Mech Sci Eng. (2018) https ://doi.org/10.1007/s4043 0-018-1081-0
[7]. De Macedo, RQ., Ferreira, RTL., Donadon, MV., Guedes, JM. Elastic properties of unidirectional fiber-reinforced composites using asymptotic homogenization techniques. J Braz Soc Mech Sci Eng. (2018) https ://doi.org/10.1007/s4043 0-018-1174-9
[8]. Sumesh, KR., Kanthavel, K. Abrasive water jet machining of Sisal/Pineapple epoxy hybrid composites with the addition of various fly ash filler. Mater Res Express. (2020) https ://doi. org/10.1088/2053-1591/ab786 5
[9]. Latif, R., Wakeel, S., Zaman Khan, N. Surface treatments of plant fibers and their effects on mechanical properties of fiber reinforced composites: a review. J Reinf Plast Compos (2019) 38:15–30. https ://doi.org/10.1177/07316 84418 802022.
[10]. Ray, D., Sarkar, BK., Rana, AK., Bose, NR. Effect of alkali treated jute fibers on composite properties. (2001) Bull Mater Sci; 24:129e35.
[11]. Mishra, S., Misra, M., Tripathy, SS., Nayak, SK., Mohanty, AK. Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng (2001) 286:107e13.
[12]. Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Vepoes, I. Influence of processing and chemical treatment of flax fibers on their composites. Compos Sci Technol ; (2003) 63:1241e6.
[13]. Gu JW, Zhang, QY., LiHC, Tang, Y S., Kong, J., Dang, J. Study on preparation of SiO2-epoxy resin hybrid materials by means of sol-gel Polym. Plastics Technol. Eng. (2007) 46 1129–34.
[14]. Krawiec, H., Vignal, V., Krystianiak, A., Gaillard, Y. Zimowski, S. Mechanical properties and corrosion behaviour after scratch and tribological tests of electrodeposited Co-Mo/TiO2 nano-composite coatings. Appl Sur Sci (2019) 475 162–174.
[15]. Goyat, MS., Ray, S., Ghosh, P K. Innovative application of ultrasonic mixing to produce homogenously mixed nano particulate epoxy composite of improved physical properties. Composite Part A.( 2011) 42 1421–31.
[16]. NgCB, Sckadler, L S., and Siegel, RW. Synthesis and mechanical properties of TiO2-epoxy nano composites. Nanostructured Mater. (1999) 12 507–10
[17]. Reddy, BM., Khan, A. Nanosized CeO2–SiO2, CeO2–TiO2, and CeO2–ZrO2 mixed oxides: influence of supporting oxide on thermal stability and oxygen storage properties of ceria Catal. Surv. Asia (2005) 9 155–71
[18]. Reddy, BM., Thrimuthullu, G., Saikia, P., Bharali. Highly dispersed ceria and ceria-zirconia nano composites over silica surface for catalytic applications Catal. Today (2009) 141 109–14
[19]. Rahmanian, S., Suraya, A., Shazed, M., Zahari, R., Zainuddin, E S. Mechanical characterization of epoxy composite with multi scale reinforcements: carbon nanotubes and short carbon fibers. Mater. Des. (2014) 60 34–40
[20]. Ganeshan, P., Nagaraja, Ganesh B., Ramshankar, P., Raja, K. 2018. Calotrpisgiganteafibers—a potential reinforcement for polymer matrices International. J of Poly. Any and Char 23 271–7.
[21]. Njuguna, J., Pielichowski, K.,Desai, S. 2008. Nanofiller reinforced polymernanocomposites. Polym Adv Technol 19:947e59.
[22]. Azeredo De HMC. 2009. Nanocomposites for food packaging applications. Food Res Int 42:1240e53.
[23]. Maldas D, Kokta BV. 1993. Performance of hybrid reinforcements in PVC composites. II: use of surface-modified mica and different cellulosic materials as reinforcements. J Vinyl Addit Technol. 15:38e44.
[24]. Kord, B. 2012. Effect of nanoparticles loading on properties of polymeric composite based on Hemp Fiber/Polypropylene. J Thermoplast Compos Mater. 25:793e806.
[25]. Babaei, I., Madanipour, M., Farsi, M., Farajpoor, A. 2014. Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite. Compos B Eng 56:163e70.
[26]. FaridulHasan, KM., Horvath, Peter., Gy€orgy, Alpar Tibor. 2020. Potential natural fiber polymeric nanobiocomposites: a review. Polymers 12:1072.
[27]. Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, HPS., Salema, AA. 2013. Potential materials for food packaging from nanoclay/natural fibers filled hybrid composites. Mater Des. 46:391e410.
[28]. Yue, BH., Yang, J., Wang, YL.2004. Preparation of zinc oxidenanoparticle via uniform precipitation method and its surface modification by methacryloxypropyltrimethoxysilane. Powder Technol. ;32:146.
[29]. Maeda, S., Corradi, R., Armes, SP. 1995. Synthesis and characterization of carboxylic acid functionalized polypyrrole - silica microparticles’. Macromolecules 28:2905.
[30]. Mahendia, S., Tomar, AK., Kumar, S. 2010. Electrical conductivity and dielectric spectroscopic studies of PVAeAg nano composite films. J Alloys Comp. 508:406e11.
[31]. Barmouz, M., Givi, MK., Besharati Seyfi, J. 2011 On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, micro hardness, wear and tensile behavior. Mater Charact 62(1):108–117.
[32]. Antil, P., Singh, S., Manna, A. 2018. Analysis on effect of electroless coated SiCp on mechanical properties of polymer matrix composites. Part Sci Technol. https://doi.org/10.1080/02726351.2018. 1444691.
[33]. Hamid, ZA., El Badry SA., Aal, AA. 2007. Electroless deposition and characterization of Ni–P–WC composite alloys. Surf Coat Technol. 201(12):5948–5953.
[34]. Lin, WH., Chang, HF. Effect of chelating agents on the structure of electroless copper coating on alumina powder. Surf Coat Technol (1998) 107(1):48–54.
[35]. Kundu, S., Das, SK., Sahoo, P. Tribological behavior of electroless Ni-P deposits under elevated temperature. Silicon (2018) 10(2):329–342.
[36]. Sharma, R., Yadav, A., Panwar, V., Kar, K. Viscoelastic properties of coil carbon nanotube-coated carbon fiber-reinforced polymer nanocomposites. J Reinf Plast Compos. (2015) 34(12):941–950.
[37]. Elansezhian, R., Ramamoorthy, B., Kesavan Nair, P.. Effect of surfactant on the efficiency and deposition rate of electrodes Ni- P coatings, J. Mater. Sci. Technol. (2007) 24 (7).
[38]. Bozkurt, E., Kaya, E., Tanoglu, M. Mechanical and thermal behavior of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Comp. Sci. Tech. (2007) 67 3394–403.
[39]. Logakis, E., Pandis, P., Pissis. Highly conducting poly(methyl ethacrylate)/carbon nano tubes composites: investigation on their thermal, dynamic mechanical, electrical and dielectric properties Compos. Sci. Technol. (2011) 71 854–62.
[40]. Sudipta, H., Prakriti, KG., Manjeet, SG. Influence of ultrasonic dual mode mixing on morphology and mechanical properties of ZrO2-epoxy nanocomposite High Perform. Polym. (2012) 24 331–41.
[41]. Rani, Joseph., Saisy Kudilil, Esthappan., Suma Kumbamala, Kuttappan. Thermal and mechanical properties of polypropylene/titanium dioxide nano composite fiber, Elsevier, Mater. Des. (2012) 37 537–542.
[42]. Yang, F., Nelson, G.L. 2006. Polymer/silica nanocomposites prepared via extraction, Polym. Adv. Technol. 17 320–326.
[43]. Kaushal, K., Ghosh, P., Arun, K. Improving mechanical and thermal properties of TiO2-epoxy nanocomposite. Composites Part B (2016) 97 353–60.
[44]. Reddy, BM., Khan, A. Nanosized CeO2–SiO2, CeO2–TiO2, and CeO2–ZrO2 mixed oxides:influence of supporting oxide on thermal stability and oxygen storage properties of ceria Catal. Surv. Asia (2005) 9 155–71