• Esteban Prieto-Vicioso Universidad Nacional Pedro Henríquez Ureña (UNPHU), Santo Domingo, Dominican Republic
  • Virginia Flores-Sasso Pontificia Universidad Católica Madre y Maestra, Santo Domingo, Dominican Republic
  • Sagrario Martínez-Ramírez Instituto Estructura de la Materia, Madrid, Spain
  • Letzai Ruiz-Valero Pontificia Universidad Católica Madre y Maestra, Santo Domingo, Dominican Republic
  • Gloria Pérez Instituto de Ciencias de la Construcción Eduardo Torroja, Madrid, Spain
Keywords: lime mortar, plasters, FTIR, Raman spectroscopy, TG-DTA


The arrival of Christopher Columbus in America stimulated the creation of new settlements in which the materials and construction methods coming from Spain and those existing in the area were used. The first village built was La Isabela (1494) where the Spaniards found good limestone for ashlars and were able to make lime as well as good clay for earth walls, masonry walls, etc. After La Isabela, the cities of La Vega (1495) and Santo Domingo (1498) were established. These villas still include vestiges of these building materials that are a source of information about their composition. The study is focused on the ruins of the fortress of Concepcion de La Vega that survived the earthquake in 1562 that destroyed the city. The aim of this research was to characterize the mortar and plasters of the fortress of Concepcion de La Vega on the Hispaniola Island. To determine their chemical and mineralogical composition optical microscopy (OM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy and a thermogravimetric differential thermal analysis (TG-DTA) were used. The results showed that the major component of the mortars was CaCO3 (95 %), indicating that there is lime mortar. The plaster is lime based with iron oxide.


1. D. Zhang, J. Zhao, D. Wang, C. Xu, M. Zhai, X. Ma. Comparative Study on the Properties of Three Hydraulic Lime Mortar Systems: Natural Hydraulic Lime Mortar, Cement-Aerial Lime-Based Mortar and Slag-Aerial Lime-Based Mortar. Construction and Building Materials, 186 (2018), 42–52.
2. D. Carran, J. Hughes, A. Leslie, C. Kennedy. A Short History of the Use of Lime as a Building Material Beyond Europe and North America. International Journal of Architectural Heritage, 6 (2012) 2, 117–146.
3. S. Martinez-Ramirez, F. Puertas, M.T. Blanco-Varela, G.E. Thompson. Studies on degradation of lime mortars in atmospheric simulation chambers. Cem Concr Res., 27 (1997) 5, 777-784.
4. A.M. Forster. Masonry Repair Options and Their Philosophical Ramifications. In: Válek J., Hughes J., Groot C. (eds) Historic Mortars. RILEM Bookseries, vol 7. Springer, Dordrecht, 2012.
5. P. Westgate, R.J. Ball, K. Paine. Olivine as a Reactive Aggregate in Lime Mortars. Construction and Building Materials, 195 (2019), 115–126.
6. D. Frankeová, V. Koudelková. Influence of Ageing Conditions on the Mineralogical Micro-Character of Natural Hydraulic Lime Mortars. Construction and Building Materials, 264 (2020), 120205.
7. D. Medjelekh, A. Kenai, S. Claude, S. Ginestet, G. Escadeillas. Multi-Technique Characterization of Ancient Materials as Part of an Eco-Renovation of Historic Centres, Case of Cahors Centre in France. Construction and Building Materials, 250, (2020), 118894.
8. M.R. Singh, K. Ganaraj, P.D. Sable. Surface Mediated Ca-Phosphate Biomineralization and Characterization of the Historic Lime Mortar, Janjira Sea Fort, India. Journal of Cultural Heritage, 44 (2020), 110–119.
9. M. Thomson, J.E. Lindqvist, J. Elsen, C.J.W.P. Groot. Chapter 2.5 Porosity of Mortars. In: Groot, C.J.W.P., Ashall, G., Hughes, J. (eds.), RILEM Report 28: Characterisation of Old Mortars with Respect to Their Repair, RILEM, Bagneux, 2007.
10. R. Boynton, K. Gutschice. Durability of mortar and masory. Factors influencing mortar durability. Durability experience with mortars. National Lime Association, Arlington, Virginia, 1964.
11. K. Balksten. Traditional lime mortar and plaster: Reconstruction with emphasis on durability, Doctoral Thesis, Göteborg: Chalmers Tekniska Högskola, 2007.
12. S. Thirumalini, R. Ravi, M. Rajesh. Experimental Investigation on Physical and Mechanical Properties of Lime Mortar: Effect of Organic Addition. Journal of Cultural Heritage, 31 (2018), 97–104.
13. G. Cultrone, E. Sebastian, M. Ortega Huertas. Durability of masonry systems: a laboratory study. Constr Build Mater, 21 (2007), 40–51.
14. G. Ponce-Antón, A. Arizzi, G. Cultrone, M.C. Zuluaga, L.A. Ortega, J.A. Mauleon. Investigating the Manufacturing Technology and Durability of Lime Mortars from Amaiur Castle (Navarre, Spain): A Chemical–Mineralogical and Physical Study. Construction and Building Materials, 299 (2021), 123975.
15. I. Rodríguez Pérez, G. Vasconcelos, P.B. Lourenço, P. Quintana, C. García, A. Dionísio. Physical-Mechanical Characterization of Limestones from Yucatan Churches, Mexico. Journal of Building Engineering, 44 (2021), 102895.
16. D. Miriello, L.B. Pingarrón, A.B. Pingarrón, D. Barca, A. Bloise, J.R. González Parra, G.M. Crisci, R. de Luca, G. Girimonte, J.L. Ruvalcaba-Sil, A. Pecci. Hydraulicity of Lime Plasters from Teotihuacan, Mexico: A Microchemical and Microphysical Approach. Journal of Archaeological Science, 133 (2021), 105453.
17. P.J.P. Gleize, E.V. Motta, D.A. Silva, H.R. Roman. Characterization of Historical Mortars from Santa Catarina (Brazil). Cement and Concrete Composites, 31 (2009) 5, 342–346.
18. A.M.S. Loureiro, S.P.A. da Paz, R. Veiga, R.S. Angélica. Investigation of Historical Mortars from Belém Do Pará, Northern Brazil. Construction and Building Materials, 233 (2020), 117284.
19. L.M. Gomes de Oliveira, F. Lucas de Oliveira Freire, F.R. Carneiro Ribeiro, I.N.L. Sousa, E. Mesquita, A.A. Bertini. Investigation of the Mortars and Clay Bricks of a Luso-Brazilian Historic Structure from XVIII Century: The Nosso Senhor Do Bonfim Church. Journal of Building Engineering, 45 (2022), 103592.
20. H. Morillas, G. Huallparimachi, M. Maguregui, I. Marcaida, E. Gallego-Cartagena, F. Astete, J.M. Madariaga. Characterization of Restoration Lime Mortars and Decay By-Products in the Meditation Area of Machu Picchu Archaeological Site. Science of The Total Environment, 692 (2019), 23–31.
21. N.V. Vagenas, A. Gatsouli, C.G. Kontoyannis. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta 59 (2003) 831-836. doi:10.1016/S0039-9140(02)00638-0
22. B. J. Saikia, G. Parthasarathy. Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys., 2010, 1, 206-210. doi:10.4236/jmp.2010.14031
23. D. Bikiaris, S. Daniilia, S. Sotiropoulou, O. Katsimbiri, E. Pavlidou, A.P. Moutsatsou, Y. Chryssoulakis. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: application on wall paintings at Meteora and Mount Athos, Greece. Spectrochimica Acta Part A, 56 (1999), 3–18.
24. T. Aguayo, E. Clavijo, A. Villagrán, F. Espinosa, F. E. Sagüés, M. Campos-Vallette. Raman vibrational study of pigments with Patrimonial interest for the Chilean Cultural Heritage. J. Chil. Chem. Soc., 55 (2010), 347-351.
25. C. Genestar Juliá, C. Pons Bonafé. The use of natural earths in picture: study and differentiation by thermal analysis. Thermochimica Acta 413 (2004) 185–192. doi:10.1016/j.tca.2003.10.016
26. G. Habert, N. Choupay, J.M. Montel, D. Guillaume, G. Escadeillas. Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cement and Concrete Research, 38 (2008), 963–975.
How to Cite
Prieto-ViciosoE, Flores-SassoV, Martínez-RamírezS, Ruiz-ValeroL, Pérez G. CHARACTERIZATION OF LIME MORTAR AND PLASTERS OF FORTRESS CONCEPCION DE LA VEGA. MatTech [Internet]. 2022Oct.5 [cited 2024Jun.19];56(5):533–539. Available from: