CHARACTERISTICS OF BYZANTINE-PERIOD LIME MORTARS AND PLASTERS FROM THE ANAIA CHURCH
Abstract
In this study, Byzantine-period lime mortars and plasters used in the Anaia Church in Kuşadası- Aydın were examined in order to determine their characteristics and investigate the continuity of the lime mortar technology through centuries in the Anaia Church. The results will also contribute to future conservation studies at the site. Basic physical properties, raw-material compositions and hydraulic properties of lime mortars and plasters; mineralogical and chemical compositions, microstructural properties of binders, aggregates and limes; and pozzolanic activities of aggregates were determined using RILEM test methods, XRD, SEM-EDX and TGA. Mortar samples were comprised of natural aggregates whereas lime plasters were made of brick aggregates. Analyses revealed that plasters were slightly less dense and more porous than mortars due to the porous structure of the brick aggregates. All mortars and plasters were hydraulic due to the use of highly reactive pozzolanic aggregates. The basic physical properties, raw-material compositions, mineralogical and chemical compositions of mortars and plasters were found to be similar throughout the construction periods spread over different centuries. These similarities revealed the conscious knowledge of the lime mortar technology during the Byzantine period in western Anatolia.
References
2 J.A.H. Oates, Lime and Limestone: Chemistry and Technology, Production and Uses, Wiley-VCH, Weinheim 1998
3 H. Böke, S. Akkurt, B. Ipekoǧlu, E. Uǧurlu, Characteristics of Brick Used as Aggregate in Historic Brick-Lime Mortars and Plasters, Cem. Concr. Res., 36 (2006), 1115–1122, doi.org/10.1016/j.cemconres.2006.03.011
4 J.P. Adam, Roman Building Materials and Techniques, (1st pub. in 1937), Routledge, London and New York 2005
5 Z. Mercangöz, Kuşadası, Kadıkalesi (Anaia), 1st ed., Ege Üniversitesi Yayınları, İzmir 2012
6 M. B. Kanmaz, B. İpekoğlu: Restorations Due to Earthquakes in the Ancient Cities: Anaia Byzantine Church, Kargir Yapılarda Koruma ve Onarım Semineri VIII, 2016, 189–205.
7 C. Foss, Ephesus after Antiquity: A Late Antique, Byzantine and Turkish City, Cambridge University Press, New York 1979
8 P. Culerrier, Les Évêchés Suffragants d’Éphèse Aux 5e-13e Siècles. Rev. Etud. Byz., 45 (1987) 1, 139–164, doi.org/https://doi.org/10.3406/rebyz.1987.2207
9 Z. Mercangöz: The Variable Historical Destiny of Anaia as Emporion and Kommerkion, I. Uluslararası Sevgi Gönül Bizans Araştırmaları Sempozyumu, 2010, 279–292
10 H. Soysal, S. Sipahioğlu, D. Kolçak, Y. Altınok, Y, Historical Earthquake Catalog of Turkey and Its Surroundings (B.C 2100-A.C 1900), Tübitak Yayınları, İstanbul 1981
11 M. B. Kanmaz, Evalation of Conservation Problems of Anaia Byzantine Church, Kadıkalesi, Kuşadası, Izmir Institute of Technology, 2015
12 RILEM:1980 – Tests Defining the Structure, Vol. 13, No.73
13 E.C. Eckel, Cements, Limes, and Plasters: Their Materials, Manufacture, and Properties, 1st ed., John Wiley & Sons, New York 1905
14 R. S. Boynton, Chemistry and Technology of Lime and Limestone, John Wiley & Sons 1966
15 M. P. Luxan, F. Madruga, J. Saavedra, Rapid Evaluation of Pozzolanic Activity of Natural Products by Conductivity Measurement, Cem. Concr. Res., 19 (1989) 1, 63–68, doi.org/10.1016/0008-8846(89)90066-5
16 A. Bakolas, G. Biscontin, A. Moropoulou, E. Zendri, Characterization of Structural Byzantine Mortars by Thermogravimetric Analysis, Thermochim. Acta 321 (1998), 151–160, doi.org/10.1016/s0040-6031(98)00454-7
17 E. Uǧurlu, H. Böke, The Use of Brick–Lime Plasters and Their Relevance to Climatic Conditions of Historic Bath Buildings, Constr. Build. Mater., 23 (2009) 6, 2442–2450 doi.org/10.1016/J.CONBUILDMAT.2008.10.005
18 Ö. Aslan Özkaya, H. Böke, Properties of Roman Bricks and Mortars Used in Serapis Temple in the city of Pergamon, Mater. Charact, 60 (2009) 9, 995–1000, doi.org/10.1016/j.matchar.2009.04.003.
19 ASTMC618-03, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (2003).
20 J. Lanas, J. I. Alvarez, Masonry Repair Lime-Based Mortars: Factors Affecting the Mechanical Behavior, Cem. Concr. Res, 33 (2003) 11, 1867–1876, doi.org/10.1016/S0008-8846(03)00210-2.
21 A. El-Turki, R. J. Ball, M. A. Carter, M. A. Wilson, C. Ince, G. C. Allen, Effect of Dewatering on the Strength of Lime and Cement Mortars, J. Am. Ceram. Soc., 93 (2010) 7, 2074–2081, doi.org/10.1111/j.1551-2916.2010.03667.x
22 E. Aggelakopoulou, A. Bakolas, A. Moropoulou, Properties of Lime-Metakolin Mortars for the Restoration of Historic Masonries, Appl. Clay Sci., 53 (2011)1, 15–19, doi.org/10.1016/j.clay.2011.04.005.
23 A. Gameiro, A. Santos Silva, P. Faria, J. Grilo, T. Branco, R. Veiga, A. Velosa, Physical and Chemical Assessment of Lime-Metakaolin Mortars: Influence of Binder:Aggregate Ratio, Cem. Concr. Compos, 45 (2014), 264–271, doi.org/10.1016/j.cemconcomp.2013.06.010
24 A. M. S. Loureiro, S. P. A. da Paz, M. R. do Veiga, R. S. Angélica, Investigation of Historical Mortars from Belém Do Pará, Northern Brazil, Constr. Build. Mater., 233 (2020), doi.org/10.1016/j.conbuildmat.2019.117284
25 A. Bakolas, G. Biscontin, A. Moropoulou, E. Zendri, Characterization of the Lumps in the Mortars of Historic Masonry, Thermochim. Acta, 269 (1995), 809–816, doi.org/10.1016/0040-6031(95)02573-1
26 S. Bruni, F. Cariati, P. Fermo, P Cairati, G. Alessandrini, L. Toniolo, White Lumps in Fifth- to Seventeenth-Century AD Mortars from Northern Italy, Archaeometry, 39 (1997) 1, 1–7, doi.org/10.1111/j.1475-4754.1997.tb00786.x
27 L. Barba, J. Blancas, L. R. Manzanilla, A. Ortiz, D. Barca, G. M. Crisci, D. Miriello, A. Pecci, Provenance of the Limestone Used in Teotihuacan (Mexico): A Methodological Approach, Archaeometry, 51 (2009) 4, 525–545, doi.org/10.1111/j.1475-4754.2008.00430.x
28 I. C. Zamba, M. G. Stamatakis, F. A. Cooper, P.G. Themelis, C. G. Zambas, Characterization of Mortars Used for the Construction of Saithidai Heroon Podium (1st Century AD) in Ancient Messene, Peloponnesus, Greece, Mater. Charact, 58 (2007), 1229–1239, doi.org/10.1016/j.matchar.2007.07.004
29 R. W. Le Maitre, A. Streckeisen, B. Zanettin, M. J. Le Bas, B. Bonin, P. Bateman, G. Bellieni, A. Dudek, S. Efremova, J. Keller, J. Lameyre, P.A Sabine, R. Schmid, H. Sørensen, A. R. Woolley, Igneous Rocks. A Classification and Glossary of Terms, 2nd ed., Cambridge University Press, New York 2002
30 D. Miriello, A. Bloise, G. M. Crisci, C. Apollaro, A. La Marca, Characterisation of Archaeological Mortars and Plasters from Kyme (Turkey), J. Archaeol. Sci., 38 (2011) 4, 794–804, doi.org/10.1016/j.jas.2010.11.002
31 C. Helvaci, Geological Features of Neogene Basins Hosting Borate Deposits: An Overview of Deposits and Future Forecast, Turkey, Bull. Miner. Res. Explor., 151 (2015), 169–215, doi.org/10.19111/bmre.05207
32 E. Uğurlu Sağın, H. E. Duran, H. Böke, Lime Mortar Technology in Ancient Eastern Roman Provinces, J. Archaeol. Sci. Reports, 39 (2021), 1–14, doi.org/10.1016/j.jasrep.2021.103132
33 P. Cardiano, S. Ioppolo, C. De Stefano, A. Pettignano, S. Sergi, P. Piraino, Study and Characterization of the Ancient Bricks of Monastery of “San Filippo Di Fragalà” in Frazzanò (Sicily), Anal. Chim. Acta, 519 (2004), 103–111, doi.org/10.1016/j.aca.2004.05.042
34 S. Lee, Y. J. Kim, H. S. Moon, Phase Transformation Sequence from Kaolinite to Mullite Investigated by an Energy-Filtering Transmission Electron Microscope, Journal of the American Ceramic Society, 82 (1999) 10, 2841–2848, doi.org/10.1111/j.1151-2916.1999.tb02165.x
35 B. Middendorf, J. J. Hughes, K. Callebaut, G. Baronio, I. Papayianni, Investigative Methods for the Characterisation of Historic Mortars - Part 2, Chemical Characterisation. Mater. Struct. Constr., 38 (2005) 282, 771–780, doi.org/10.1617/14282