MOLECULAR DYNAMICS SIMULATION OF TENSILE DEFORMATION OF NANOMETER MULTILAYER Cu/Ta MATERIALS

  • Jianian Hu State State Key Laboratory of precision blasting
  • Zhang Haotian State Key Laboratory of Precision Blasting, Jianghan University, Hubei, Wuhan, China
  • Zhu Youlin State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, China
  • Li Peibo State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, China
  • Luo Guoqiang Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, Chaozhou, China
  • Wang Chuanbin Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, Chaozhou, China
  • Shen Qiang Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, Chaozhou, China
  • Zhang Lianmeng Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, Chaozhou, China
Keywords: molecular dynamics simulation, Cu/Ta nanolayered composites, tensile properties, deformation mechanism, dislocation motion

Abstract

In this research, the tensile mechanical properties and microstructure evolution of Cu/Ta nanolayered composites were studied using the molecular dynamics simulation method. By analyzing the tensile stress/strain relationship of Cu/Ta with different interface structures and the movement of dislocations during the stretching process, the deformation mechanism of materials with different interface structures and the effect of interface structures on the tensile strength of Cu/Ta nanolayered composites are revealed. The effect of shear localization during extension is also analyzed. The results show that the dislocation structures at the interfaces of Kurdjumov-Sachs-type and Nishiyama-Wasserman-type samples are parallelogram and triangular interface defect arrays, respectively, which can easily induce two Shockley partial dislocations to slide along different (111) planes, forming an intersection and merging into ladder-rod dislocations. However, dislocations between the Kurdjumov-Sachs š112ć-type sample interfaces exhibit parallel array characteristics, while the interfacial dislocations have non-planar interface components, which can induce deformation twinning. The process is dissociated through a set of intrinsic interfacial dislocations. Shockley partial dislocations are then formed by dislocation motion, creating stacking faults (SF1), and then the second set of partial dislocations may nucleate from the interface and slide on the adjacent SF1 plane, eventually forming deformation twinning.

References

[1] Abyzov A M, Shakhov F M, Averkin A I, et al. Mechanical properties of a diamond-copper composite with high thermal conductivity[J]. Materials & Design, 2015, 87: 527-539, doi: 10.1016/j.matdes.2015.08.048
[2] Pan Z L, Li Y L, Wei Q. Tensile properties of nanocrystalline tantalum from molecular dynamics simulations[J]. Acta Materialia, 2008, 56(14): 3470-3480, doi:10.1016/j.actamat.2008.03.025
[3] Pei Q X, Lu C, Fang F Z, et al. Nanometric cutting of copper: A molecular dynamics study[J]. Computational Materials Science, 2006, 37(4): 434-441. doi:10.1016/j.commatsci.2005.10.006
[4] Qin J H, Chen Q, Yang C Y, et al. Research process on property and application of metal porous materials[J]. Journal of Alloys and Compounds, 2016, 654: 39-44, doi:10.1016/j.jallcom.2015.09.148
[5] Darling K A, Huskins E L, Schuster B E, et al. Mechanical properties of a high strength Cu-Ta composite at elevated temperature[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2015, 638: 322-328, doi:10.1016/j.msea.2015.04.069
[6] Tran A S, Fang T H. Size effect and interfacial strength in nanolaminated Cu/CuxTa100-x composites using molecular dynamics[J]. Computational Materials Science, 2020, 184,doi: 10.1016/j.commatsci.2020.109890
[7] Zeng L F, Gao R, Fang Q F, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding[J]. Acta Materialia, 2016, 110: 341-351, doi:10.1016/j.actamat.2016.03.034
[8] Zhang G P, Liang F, Luo X M, et al. A review on cyclic deformation damage and fatigue fracture behaviour of metallic nanolayered composites[J]. Journal of Materials Research, 2019, 34(9): 1479-1488, doi: 10.1557/jmr.2019.22
[9] Liang X Q, Zhang J Y, Wang Y Q, et al. Tuning the size-dependent He-irradiated tolerance and strengthening behaviour of crystalline/amorphous Cu/Ta nanostructured multilayers[J]. Materials Science and Engineering: A, 2016, 672: 153-160, doi:10.1016/j.msea.2016.07.005
[10] Zhu X Y, Luo J T, Zeng F, et al. Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers[J]. Thin Solid Films, 2011, 520(2): 818-823, doi:10.1016/j.tsf.2010.12.251
[11] Yavas H, Fraile A, Huminiuc T, et al. Deformation-Controlled Design of Metallic Nanocomposites[J]. Acs Applied Materials & Interfaces, 2019, 11(49): 46296-46302, doi: 10.1021/acsami.9b12235
[12] Fu T, Peng X, Weng S, et al. Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers[J]. Materials Science and Engineering: A, 2016, 658: 1-7, doi:10.1016/j.msea.2016.01.055
[13] Weng S, Ning H, Hu N, et al. Strengthening effects of twin interface in Cu/Ni multilayer thin films – A molecular dynamics study[J]. Materials & Design, 2016, 111: 1-8, doi:10.1016/j.matdes.2016.08.069
[14] Béjaud R, Durinck J, Brochard S. Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study[J]. Acta Materialia, 2018, 144: 314-324, doi: 10.1016/j.actamat.2017.10.036
[15] Lv C, Yang J, Zhang X P, et al. Interfacial effect on deformation and failure of Al/Cu nanolaminates under shear loading[J]. Journal of Physics D-Applied Physics, 2018, 51(33), doi:10.1088/1361-6463/aad2a8
[16] Srinivasan S, Kale C, Hornbuckle B C, et al. Radiation tolerance and microstructural changes of nanocrystalline Cu-Ta alloy to high dose self-ion irradiation[J]. Acta Materialia, 2020, 195: 621-630, doi:10.1016/j.actamat.2020.05.061
[17] Lu L, Huang C, Pi W L, et al. Molecular dynamics simulation of effects of interface imperfections and modulation periods on Cu/Ta multilayers[J]. Computational Materials Science, 2018, 143: 63-70, doi:10.1016/j.commatsci.2017.10.034
[18] Bhatia M A, Rajagopalan M, Darling K A, et al. The role of Ta on twinnability in nanocrystalline Cu-Ta alloys[J]. Materials Research Letters, 2017, 5(1): 48-54, doi:10.1080/21663831.2016.1201160
[19] Zhang R F, Wang J, Beyerlein I J, et al. Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces[J]. Scripta Materialia, 2011, 65(11): 1022-1025, doi:10.1016/j.scriptamat.2011.09.008
[20] Beyerlein I J, Wang J, Kang K, et al. Twinnability of bimetal interfaces in nanostructured composites[J]. Materials Research Letters, 2013, 1(2): 89-95, doi:10.1080/21663831.2013.782074
[21] Stukowski A, Bulatov V V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces[J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8), doi:10.1088/0965-0393/20/8/085007
[22] Gruber P A, Arzt E, Spolenak R. Brittle-to-ductile transition in ultrathin Ta/Cu film systems[J]. Journal of Materials Research, 2009, 24(6): 1906-1918, doi:10.1557/jmr.2009.0252
[23] Choudhuri D, Campbell A. Interface dominated deformation mechanisms in two-phase fcc/B2 nanostructures: Nishiyama-Wasserman vs. Kurdjumov-Sachs interfaces[J]. Computational Materials Science, 2020, 177, doi:10.1016/j.commatsci.2020.109577
[24] Yan Z G, Lin Y J. Lomer-Cottrell locks with multiple stair-rod dislocations in a nanostructured Al alloy processed by severe plastic deformation[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019, 747: 177-184, doi: 10.1016/j.msea.2019.01.066
[25] Hosseini M, Pardis N, Manesh H D, et al. Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB)[J]. Materials & Design, 2017, 113: 128-136, doi:10.1016/j.matdes.2016.09.094
[26] Wang C B, Wang J J, Hu J N, et al. Shear Localization and Mechanical Properties of Cu/Ta Metallic Nanolayered Composites: A Molecular Dynamics Study[J]. Metals, 2022, 12(3), doi:10.3390/met12030421
[27] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357(6355): 1029-1032, doi:10.1126/science.aan0177
[28] Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669): 422-426, doi:10.1126/science.1092905
Published
2022-08-17
How to Cite
1.
Hu J, Haotian Z, Youlin Z, Peibo L, Guoqiang L, Chuanbin W, Qiang S, Lianmeng Z. MOLECULAR DYNAMICS SIMULATION OF TENSILE DEFORMATION OF NANOMETER MULTILAYER Cu/Ta MATERIALS. MatTech [Internet]. 2022Aug.17 [cited 2025Jun.15];56(4):415–422. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/505