LASER DRILLING OF AIR-FILM COOLING HOLES IN AIR AND WITH COAXIAL WATERJET ASSISTANCE

  • DongJie Wu School of Mechanical Engineering, Ningbo University of Technology, Ningbo, China
  • Bin Wang Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, China
  • Yuezhuan Liu School of Mechanical Engineering, Ningbo University of Technology, Ningbo, China
Keywords: coaxial waterjet assisted laser drilling, air-film cooling holes, heat-affected zone, scanning electron microscopy, transmission electron microscopy

Abstract

Air-film cooling holes were drilled into a turbine blade with a 532-nm Nd:YVO4 nanosecond laser in air and with coaxial waterjet assistance. The drilling quality of the sidewalls of the holes was investigated comparatively by means of a 3D confocal laser scanning microscope, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. Results have shown that the maximum thickness of the processing-induced defects around the air-film cooling holes drilled by the laser in air is up to 100 µm, while the holes obtained by means of the asynchronous operation of laser drilling in air and coaxial waterjet assistance indicate no spatter, oxide layer, recast layer or cracks. Compared with laser drilling in air, the minimum size of the heat-affected zone around the air-film cooling holes induced by asynchronous processing is decreased down to the sub-micrometer scale. The main phases in the oxide layer, recast layer and heat-affected zone are α-Al2O3, γ-Ni, and β-NiAl, respectively. Asynchronous processing can help us achieve high position precision and it will have wide application.

are α-Al2O3, γ-Ni, and β-NiAl, resp

References

1 N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science, 296 (2002) 280-284. DOI: 10.1126/science.1068609
2 Y. Dong, X. Li, Q. Zhao, X. Li, Y. Dou, Geometrical modeling to improve the accuracy of drilled cooling holes on turbine blades. Int J Adv Manuf Technol, 93 (2017) 4409-4428. https://doi.org/10.1007/s00170-017-0818-8
3 J. Han, B. Yoo, H.J. Im, C.S. Oh, P.P. Choi, Microstructural evolution of the heat affected zone of a Co–Ti–W alloy upon laser cladding with a CoNiCrAlY coating, Mater. Charact., 158 (2019), 109998. doi:10.1016/j.matchar.2019.109998
4 G. D. Gautam, A. K. Pandey, Pulsed Nd:YAG laser beam drilling: A review, Opt. Laser Technol., 100 (2018), 183-215. doi:10.1016/j.optlastec.2017.09.054
5 D.B. Trivedi, J. Vasavada, S.S. Joshi, Microstructural assessment of drilled cross-sections on titanium generated under different cooling strategies, Mater. Today Commun., 26 (2021), 101954. doi:10.1016/j.mtcomm.2020.101954
6 K. Chadha, Y. Tian, J. Pasco, C. Jr. Aranas. Dual-metal laser powder bed fusion of iron- and cobalt-based alloys, Mater. Charact., 178 (2021), 111285. doi:10.1016/j.matchar.2021.111285
7 W. Sun, Y. Xu, C. Hu, X. Liu, Effect of film-hole configuration on creep rupture behavior of a second generation nickel-based single crystal superalloys, Mater. Charact., 130 (2017), 298-310. doi:10.1016/j.matchar.2017.06.019
8 H. Mustafaa, D.T.A. Matthews, G.R.B.E. Römer, Investigation of the ultrashort pulsed laser processing of zinc at 515 nm: Morphology, crystallography and ablation threshold, Mater. Des., 169 (2019), 107675. doi:10.1016/j.matdes.2019.107675
9 S. Pattanayak, S. Panda, Laser beam micro drilling – a Review, Lasers Manuf. Mater. Process, 5 (2018), 366–394. doi:10.1007/s40516-018-0072-4
10 C.M. Lee, W.S. Woo, J.T. Baek, E.J. Kim, Laser and arc manufacturing processes: a review, Int. J. Precis. Eng. Man., 17 (2016), 973-985. doi:10.1007/s12541-016-0119-4
11 K. Hock, B. Adelmann, R. Hellmann, Comparative study of remote fiber laser and water-jet guided laser cutting of thin metal sheets, Phys. Procedia, 39 (2012), 225-231. doi:10.1016/j.phpro.2012.10.033
12 B. Richerzhagen, Method and apparatus for machining material with a liquid-guided laser beam, PCT ed., US5902499, US, (1999).
13 W. Zhang, Photon energy material processing using liquid core waveguide, US20060133752A1, US, (2006).
14 Y.K. Madhukar, S. Mullick, A.K. Nath, A study on co-axial water-jet assisted fiber laser grooving of silicon, J. Mater. Process Technol., 227 (2016), 200-215. doi:10.1016/j.jmatprotec.2015.08.013
15 Y.Z. Liu, Coaxial waterjet-assisted laser drilling of air-film cooling holes in turbine blades, Int. J. Mach. Tool. Manu., 150 (2020), 103510. doi:10.1016/j.ijmachtools.2019.103510
16 G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-mm wavelength region, Appl. Optics, 12 (1973), 555-563. doi:10.1364/AO.12.000555
17 J.F. Wei, L.Q. Sun, K. Zhang, X.Y. Hu, S. Zhou, Heat exchange model in absorption chamber of water-direct-absorption-typed laser energy meter, Opt. Laser Technol., 67 (2015), 65-71. doi:10.1016/j.optlastec.2014.09.015
18 Y. Zhang, H. Qiao, J. Zhao, Z. Cao, Y. Yu, Numerical simulation of water jet–guided laser micromachining of CFRP, Mater. Today Commun., 25 (2020), 101456. doi:10.1016/j.mtcomm.2020.101456
19 Y.Z. Liu, S.J. Zheng, Y.L. Zhu, H. Wei, X.L. Ma, Microstructural evolution at interfaces of thermal barrier coatings during isothermal oxidation, J. Eur. Ceram. Soc., 36 (2016), 1765-1774. doi:10.1016/j.jeurceramsoc.2016.02.011
20 W. Li, Y. Li, C. Sun, Z. Hu, T. Liang, W. Lai, Microstructural characteristics and degradation mechanism of the NiCrAlY/CrN/DSM11 system during thermal exposure at 1100°C, J. Alloy. Compd., 506 (2010), 77-84. doi:10.1016/j.jallcom.2010.06.168
21 Y.Z. Liu, X.B. Hu, S.J. Zheng, Y.L. Zhu, H. Wei, X.L. Ma, Microstructural evolution of the interface between NiCrAlY coating and superalloy during isothermal oxidation, Mater. Des., 80 (2015), 63-69. doi:10.1016/j.matdes.2015.05.014
22 A. Kruusing, Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods, Opt. Laser Eng., 41 (2004), 329-352. doi:10.1016/S0143-8166(02)00143-4
23 Q. Feng, Y.N. Picard, H. Liu, S.M. Yalisove, G. Mourou, T.M. Pollock, Femtosecond laser micromachining of a single-crystal superalloy, Scripta Mater, 53 (2005), 511-516. doi:10.1016/j.scriptamat.2005.05.006
24 V. Tangwarodomnukun, J, Wang, C.Z. Huang, H.T. Zhu, Heating and material removal process in hybrid laser-waterjet ablation of silicon substrates, Int. J. Mach. Tools Manu., 79 (2014), 1–16. doi:10.1016/j.ijmachtools.2013.12.003
25 S. Duangwas, V. Tangwarodomnukun, C. Dumkum, Development of an overflow-assisted underwater laser ablation, Mater. Manuf. Process, 29 (2014) , 1226–1231. doi:10.1080/10426914.2014.930896
26 V. Tangwarodomnukun, Overflow-assisted laser machining of titanium alloy: surface characteristics and temperature field modeling, Int. J. Adv. Manuf. Technol., 88 (2017), 147–158. doi:10.4028/www.scientific.net/MSF.763.91
Published
2022-08-17
How to Cite
1.
Wu D, Wang B, Liu Y. LASER DRILLING OF AIR-FILM COOLING HOLES IN AIR AND WITH COAXIAL WATERJET ASSISTANCE. MatTech [Internet]. 2022Aug.17 [cited 2025Jun.15];56(4):397–406. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/497