EVALUATION OF SECONDARY ALUMINIUM DROSS IN CALCIUM ALUMINATE CEMENT
Abstract
In this study, the evaluation of aluminium dross from secondary aluminium production in calcium aluminate cement was investigated. Salt compounds were removed significantly from the secondary aluminium dross by washing. Mixtures of washed dross and quicklime were prepared to obtain a cement additive by considering the standard cement with low alumina and they were sintered at 1250 °C for 5 h. The phases of mayenite, monocalcium aluminate, grossite, gehlenite, larnite, periclase and spinel were detected in the sintered samples using an X-ray diffraction analysis. Tests of the normal consistency, setting time and compressive strength were carried out at replacement levels of (2.5, 5, 7.5, 10 and 12.5) w/% of the cement additive to determine the physical properties of the cement paste/mortar. Increasing the level of the cement additive in the commercial calcium aluminate cement (ISIDAC 40) accelerated the setting time of the mortar and decreased workability.
References
[2] P.E. Tsakiridis, Aluminium salt slag characterization and utilization – A review, J. Hazard. Mater., 217– 218 (2012), 1– 10, doi: 10.1016/j.jhazmat.2012.03.052
[3] Q. Yang, Q. Li, G. Zhang, Q. Shi, H. Feng, Investigation of leaching kinetics of aluminum extraction from secondary aluminum dross with use of hydrochloric acid, Hydrometallurgy, 187 (2019), 158–167, doi: 10.1016/j.hydromet.2019.05.017
[4] A.K. Tripathy, S. Mahalik, C.K. Sarangi, B.C. Tripathy, K. Sanjay, I.N. Bhattacharya, A pyro-hydrometallurgical process for the recovery of alumina from waste aluminium dross, Miner. Eng., 137 (2019), 181–186, doi: 10.1016/j.mineng.2019.04.009
[5] L.F. How, A. Islam, M.S. Jaafar, Y.H. Taufiq-Yap, Extraction and characterization of γ-alumina from waste aluminium dross, Waste Biomass Valor., 8(2) (2017), 321–327, doi: 10.1007/s12649-016-9591-4
[6] U. Singh, M.S. Ansari, S.P. Puttewar, A. Agnihotri, Studies on process for conversion of waste aluminium dross into value added products, Russ J. Non-Ferr. Met., 57(4) (2016), 296–300, doi: 10.3103/S1067821216040131
[7] M. Mahinroosta, A. Allahverdi, Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study, J. Environ. Manage., 212 (2018), 278-291, doi: 10.1016/j.jenvman.2018.02.009
[8] B.J. Panditharadhya, S. Vargala, R.H Mulangi, A.U. Ravi Shankar, Mechanical properties of pavement quality concrete with secondary aluminium dross as partial replacement for ordinary portland cement, 14th International Conference on Concrete Engineering and Technology, IOP Conf. Series: Materials Science and Engineering, 431 (2018), 032011, doi: 10.1088/1757-899X/431/3/032011
[9] S.O. Adeosun, O.I. Sekunowo, O.O. Taiwo, W.A. Ayoola, A. Machado, Physical and mechanical properties of aluminum dross, Adv. Mater., 3(2) (2014), 6-10, doi: 10.11648/j.am.20140302.11
[10] M. Jung, B. Mishra, Recovery of gibbsite from secondary aluminum production dust by caustic leaching, Miner. Eng., 127 (2018), 122–124, doi: 10.1016/j.mineng.2018.08.012
[11] M.S. Reddy, D. Neeraja, Mechanical and durability aspects of concrete incorporating secondary aluminium slag, Resour. Eff. Techn., 2(4) (2016), 225–232, DOI: 10.1016/j.reffit.2016.10.012
[12] D.A. Pereira, B. De Aguiar, F. Castro, M.F. Almeida, J.A. Labrincha, Mechanical behaviour of portland cement mortars with incorporation of Al-containing salt slags, Cement Concr. Res., 30 (2000), 1131-1138, doi: 10.1016/S0008-8846(00)00272-6
[13] H.N. Yoshimura, A.P. Abreu, A.L. Molisani, A.C. De Camargo, J.C.S. Portela, N.E. Narita, Evaluation of aluminum dross waste as raw material for refractories, Ceram. Int., 34(3) (2008), 581–591, doi: 10.1016/j.ceramint.2006.12.007
[14] E.M.M. Ewais, N.M. Khalil, M.S. Amin, Y.M.Z. Ahmed, M.A. Barakat, Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement, Ceram. Int., 35(8) (2009), 3381–3388, doi: 10.1016/j.ceramint.2009.06.008
[15] H.F.W. Taylor, Cement chemistry, Thomas Telford, London (1997).
[16] V. Antonovič, J. Kerienė, R. Boris, M. Aleknevičius, The effect of temperature on the formation of the hydrated calcium aluminate cement structure, Procedia Eng., 57 (2013), 99 – 106, doi: 10.1016/j.proeng.2013.04.015
[17] J. Zhang, G. Li, X. Yang, S. Ren, Z. Song, Study on a high strength ternary blend containing calcium sulfoaluminate cement/calcium aluminate cement/ordinary portland
cement, Constr. Build. Mater., 191 (2018), 544–553, doi: 10.1016/j.conbuildmat.2018.10.040
[18] M.P. Adams, J.H. Ideker, Influence of aggregate type on conversion and strength in calcium aluminate cement concrete, Cement Concr. Res., 100 (2017), 284–296, doi: 10.1016/j.cemconres.2017.07.007
[19] H.J. Yang, K.Y. Ann, M.S. Jung, Development of strength for calcium aluminate cement mortars blended with GGBS, Adv. Mater. Sci. Eng., ID 9896012 (2019), DOI: 10.1155/2019/9896012
[20] EN 14647, Calcium aluminate cement – Composition, specifications and conformity criteria, (2005)
[21] EN 196-1, Methods of testing cement - Part 1: Determination of strength, (2016)
[22] EN 196-3, Methods of testing cement - Part 3: Determination of setting time and soundness, (2002)
[23] M. Mahinroosta, A. Allahverdi, Hazardous aluminum dross characterization and recycling strategies: A critical review, J. Environ. Manage., 223 (2018), 452–468, doi: 10.1016/j.jenvman.2018.06.068
[24] B.R. Das, B. Dash, B.C. Tripathy, I.N. Bhattacharya, S.C. Das, Production of η-alumina from waste aluminium dross, Miner. Eng., 20(3) (2007), 252-258, doi: 10.1016/j.mineng.2006.09.002
[25] M. Saifur. R. Sarker, M. Zahangir, M.R. Qadir, M.A. Gafur, M. Moniruzzaman, Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process, Int. J. Min. Met. Mater., 22 (4) (2015), 429-436, doi: 10.1007/s12613-015-1090-2
[26] A. Engbert, S. Gruber, J. Plank, The effect of alginates on the hydration of calcium aluminate cement, Carbohydrate Polymers, 236 (2020), 116038, doi: 10.1016/j.carbpol.2020.116038
[27] K. Şengül, S.T. Erdoğan, Influence of ground perlite on the hydration and strength development of calcium aluminate cement mortars, Constr. Build. Mater., 266 (2021), 120943, doi:10.1016/j.conbuildmat.2020.120943
[28] Ö. Kırca, İ.Ö. Yaman, M. Tokyay, Compressive strength development of calcium aluminate cement–GGBFS blends, Cem. Concr. Compos., 35(1) (2013), 163–170, doi:10.1016/j.cemconcomp.2012.08.016
[29] B. Pacewska, I. Wilinska, M. Nowacka, Studies on the influence of different fly ashes and portland cement on early hydration of calcium aluminate cement, J. Therm. Anal. Calorim., 106 (2011), 859–868, doi: 10.1007/s10973-011-1570-1
[30] A. Abolhasani, B. Samali, F. Aslani, Rice husk ash incorporation in calcium aluminate cement concrete: Life cycle assessment, hydration and strength development, Sustainability, 14(2) (2022), 1012, doi: 10.3390/su14021012
[31] J.I. Arimanwa, D.O. Onwuka, M.C. Arimanwa, U.S. Onwuka, Prediction of the compressive strength of aluminum waste–cement concrete using scheffe’s theory, J. Mater. Civil Eng., 24(2), (2012), 177-183, doi: 10.1061/(ASCE)MT.1943-5533.0000369
[32] D.O. Nduka, O. Joshua, A.M. Ajao, B.F. Ogunbayo, K.E. Ogundipe, Influence of secondary aluminum dross (SAD) on compressive strength and water absorption capacity properties of sandcrete block, Cogent Eng., 6 (2019), 1608687, doi: 10.1080/23311916.2019.1608687
[33] N.G. Ozerkan, O.I. Maki, M.W. Anayeh, S. Tangen, A.M. Abdullah, The Effect of aluminium dross on mechanical and corrosion properties of concrete, Int. J. Innov. Res. Sci. Eng. Techn., 3(3) (2014), 9912–9922
[34] S. Javali, A.R. Chandrashekar, S.R. Naganna, D.S. Manu, P. Hiremath, H.G. Preethi, N.V. Kumar, Eco-concrete for sustainability: utilizing aluminium dross and iron slag as partial replacement materials, Clean Technol. Envir., 19(9) (2017), 2291-2304, doi: 10.1007/s10098-017-1419-9
[35] T. Yingsamphancharoen, A. Rodchanarowan, The influence of aluminum dross on mechanical and corrosion properties of cement paste: Part I, Int. J. Adv. Res. Eng. Tech. (IJARET), 10(6) (2019), 192-201