THE INFLUENCE OF Nb, Ta AND Ti MODIFICATION ON HOT-WORK TOOL-STEEL GRAIN GROWTH DURING AUSTENITIZATION
Abstract
In order to explore the influence of niobium, tantalum and titanium modification on grain growth in high-thermal-conductive hot-work tool steel during austenitisation at high temperatures, three types of modified steels (sample HTCS-130 + 0.06 w/% Nb, sample HTCS-130 + 0.03 w/% Ta, sample HTCS-130 + 0.006 w/% Ti) based on reference (sample HTCS-130 – 0) were prepared. The effect of different austenitisation temperatures (1030, 1060, 1080 and 1100) °C on hardness after quenching and grain size were investigated. The results show that there is a positive effect on the mechanical properties and a decreased grain-growth effect in the modified steel samples. The precipitation behaviour of the carbides was also investigated with electron microscopy. The Mo-W carbides were relatively weak at retaining grain size, but their pinning effect was increased with the incorporation of other carbide-forming elements like Nb and Ta. MC-type carbides on the grain boundary were effective at grain-boundary pinning. Nb even further increased the resistance by forming NbC carbides. The addition of Ti, on the other hand, proved to be ineffective due to the intergranular precipitation of the formed carbonitrides.
References
2 M. Vončina, T. Balaško, J. Medved, A. Nagode, Interface Reaction between Molten Al99.7 Aluminum Alloy and Various Tool Steels, Materials, 14 (2021) 24, 7708, doi:10.3390/ma14247708
3 R. A. Mesquita, Tool steels: properties and performance, 1st ed., CRC Press, Boca Raton 2016, 257
4 B. Podgornik, M. Sedlaček, B. Žužek, A. Guštin, Properties of tool steels and their importance when used in a coated system, Coatings, 10 (2020) 3, 265, doi:10.3390/coatings10030265
5 T. Balaško, M. Petrič, J. Medved, P. Mrvar, The influence of thermal conductivity for different mould materials on solidification of AlSi9Cu3 alloy, Livarski vestnik, 65 (2018) 4, 233-248
6 P. Oksman, S. Yu, H. Kytönen, S. Louhenkilpi, The effective thermal conductivity method in continuous casting of steel, Acta Polytech. Hungarica 11, (2014) 9, 5–22
7 R. Singh, Cold chamber die casting of aluminium alloy: a case study. J. Mech. Eng., 46 (2017) 1, 22–27
8 E. Kaschnitz, P. Hofer, W. Funk, Thermophysical properties of a hot-work tool-steel with high thermal conductivity, Int. J. Thermophys., 34 (2013) 5, 843–850, doi:10.1007/s10765-012-1162-8
9 I. Valls, A. Hamasaiid, A. Padré, High thermal conductivity and high wear resistance tool steels for cost-effective hot stamping tools, J. Phys. Conf. Ser., 896 (2017) 012046, doi:10.1088/1742-6596/896/1/012046
10 A. Eser, C. Broeckmann, C. Simsir, Multiscale modeling of tempering of AISI H13 hot-work tool steel - Part 1: Prediction of microstructure evolution and coupling with mechanical properties, Comput. Mater. Sci., 113, (2016), 280–291, doi:10.1016/j.commatsci.2015.11.020
11 J.Y. Li, Y. L. Chen, J. H. Huo, Mechanism of improvement on strength and toughness of H13 die steel by nitrogen, Mater. Sci. Eng. A, 640, (2015), 16–23, doi:10.1016/j.msea.2015.05.006
12 F. Qayyum, M. Shah, S. Manzoor, M. Abbas, Comparison of thermomechanical stresses produced in work rolls during hot and cold rolling of cartridge brass 1101, Mater. Sci. Technol., 31 (2015) 3, 317-324, doi:10.1179/1743284714Y.0000000523
12 M. T. Coll Ferrari, Effect of austenitising temperature and cooling rate on microstructures of hot-work tool steels, Licentate Thesis, Trollhättan 2015, 85
13 S. Z. Qamar, Effect of heat treatment on mechanical properties of H11 tool steel, J. Achiev. Mater. Manuf., 25 (2009) 2, 115–120
14 G. E. Totten, Steel heat treatment: metallurgy and technologies, CRC Press, Boca Raton 2006, 848
15 B. A. Becherer, T. J. Witheford, T. Vasco (Introduction to Heat Treating of Tool Steels), ASM Handbook, Vol. 4, Heat Treating, ASM International, OH, USA 1991, 1544–1589
16 R. Šmak, J. Votava, A. Polcar, The cooling media influence on selected mechanical properties of steel, Acta Tehnologica Agriculturae, 23 (2020) 4, 183-189, doi:10.2478/ata-2020-0029
17 S. Al-Qawabah, A. Mostafa, A. Al-Rawajfeh, U. Al-Qawabeha, Effect of heat treatment on the grain size, microhardness and corrosion behavior of the cold-working tool steels AISI D2 and AISI O1, Mater. Tehnol., 54 (2020) 6, 785–790, doi:10.17222/mit.2020.035
18 D. Wu, F. Wang, J. Cheng, C. Li, Effect of Nb and V on the continuous cooling transformation of undercooled austenite in Cr–Mo–V steel for brake discs, Int. J. Miner. Metall. Mater. 25 (2018) 8, 892–901, doi:10.1007/s12613-018-1638-z
19L. M. Fu, H. R. Wang, W. Wang, A. D. Shan, Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels, Mater. Sci. Technol. 27 (2011) 6, 996–1001, doi:10.1179/1743284711Y.0000000001
20 F.A. Burgmann, Y. Xie, J. M. Cairney, S. P. Ringer, C. R. Killmore, F. J. Barbaro, J. G. Williams, The effect of niobium additions on ferrite formation in CASTRIP® steel, Materials Forum, 32 (2008), 9-12
21 J. Du, Examination of the effect of tin particles and grain size on the charpy impact transition temperature in steels, Master’s Thesis, Birmingham 2011, 62
23 E. I. Hernandez-Duran, L. Corallo, T. Ros-Yanez, F. M. Castro-Cerda, R. H. Petrov, Influence of Mo–Nb–Ti additions and peak annealing temperature on the microstructure and mechanical properties of low alloy steels after ultrafast heating process, Mater. Sci. Eng. A, 808 (2021),140928, doi:10.1016/j.msea.2021.140928
24 C. Klinkenberg, K. Hulka, W. Bleck, Niobium carbide precipitation in microalloyed steel, Steel Res. Int., 75 (2004) 11, 744–752, doi:10.1002/srin.200405837
25 H. Kejian, T. N. Baker, The effects of small titanium additions on the mechanical properties and the microstructures of controlled rolled niobium-bearing HSLA plate steel, Mater. Sci. Eng. A, 169 (1993) 1, 53–65, doi:10.1016/0921-5093(93)90598-9
26 J. Foder, J. Burja, G. Klančnik, Grain size evolution and mechanical properties of Nb, V–Nb, and Ti–Nb boron type S1100QL steels, Metals. 11 (2021) 3, 1–16, doi:10.3390/met11030492
27 H. Asahi, Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels, ISIJ Int., 42 (2002) 10,1150–1155, doi:10.2355/isijinternational.42.1150
28 F. Han, B. Hwang, D. W. Suh, Z. Wang, D. L. Lee, S. J. Kim, Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels, Met. Mater. Int., 14 (2008) 6, 667–672, doi:10.3365/met.mat.2008.12.667
29 G. Wang, Y. Li, Effects of alloying elements and temperature on thermal conductivity of ferrite, J. Appl. Phys., 126 (2019) 12, 125118, doi:10.1063/1.5115441
30 P. Michaud, D. Delagnes, P. Lamesle, M. H. Mathon, C. Levaillant, The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, Acta Mater. 55 (2007) 14, 4877–4889, doi:10.1016/j.actamat.2007.05.004
31 Y. Liu, W. Zhang, Q. Tong, Q. Sun, Effects of Si and Cr on complete decarburization behavior of high carbon steels in atmosphere of 2 vol. % O2, J. Iron Steel Res. Int., 23 (2016). 12, 1316–1322, doi:10.1016/S1006-706X(16)30194-7
32 J. Chen, C. Liu, Y. Liu, B. Yan, H. Li, Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel, J. Nucl. Mater., 479 (2016), 295–301, doi:10.1016/j.jnucmat.2016.07.029