CHARACTERIZATION OF DIFFERENT WC-Co CEMENTED-CARBIDE TOOLS
Abstract
This paper deals with the characterization of three different commercial, WC-Co cemented-carbide tools in the form of saw blades, one group of which exhibits more frequent cracking. Since the properties of these materials largely depend on the microstructure, a detailed characterization was carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The SEM image analysis included a determination of the binder content and the mean WC grain area. The average chemical composition of these materials was also determined using an X-ray fluorescence (XRF) analyser. The results show that despite the same content of binder-forming elements in all three WC-Co cemented-carbide materials, the material that cracked more frequently contained a smaller amount of binder and a lower mean WC grain area, both of which are known to reduce the toughness of such a material.
References
[2] A.T. Santhanam, Metallography of Cemented Carbides, Metallography and Microstructures, Vol. 9, ASM Handbook, ASM International, 2004, 1067-1078
[3] S. Norgren, J. García, A. Blomqvist, L. Yin, Trends in the P/M hard metal industry, International Journal of Refractory Metals and Hard Materials, 48 (2015) 31-45, https://doi.org/10.1016/j.ijrmhm.2014.07.007
[4] G. Gille, J. Bredthauer, B. Gries, B. Mende, W. Heinrich, Advanced and new grades of WC and binder powder – their properties and application, International Journal of Refractory Metals & Hard Materials 18 (2000) 87-102, https://doi.org/10.1016/S0263-4368(00)00002-0
[5] B. Wittmann, W.-D. Schubert, B. Lux, WC grain growth and grain growth inhibition in nickel and iron binder hardmetals, International Journal of Refractory Metals & Hard Materials 20 (2002) 51–60, https://doi.org/10.1016/S0263-4368(01)00070-1
[6] J.M. Densley, J. P. Hirth, FRACTURE TOUGHNESS OF A NANOSCALE WC-Co TOOL STEEL, Scripta Materialia, 38 (1998) 239-244, https://doi.org/10.1016/S1359-6462(97)00435-1
[7] H. Saito, A. Iwabuchi, T. Shimizu, Effects of Co content and WC grain size on wear of WC cemented carbide, Wear 261 (2006) 126–132, https://doi.org/10.1016/j.wear.2005.09.034
[8] A.V. Shatov, S.A. Firstov, I.V. Shatova, The shape of WC crystals in cemented carbides, Materials Science and Engineering A242 (1998) 7–14, https://doi.org/10.1016/S0921-5093(97)00509-1
[9] A. Delanoё, M. Bacia, E. Pauty, S. Lay, C.H. Allibert, Cr-rich layer at the WC/Co interface in Cr-doped WC–Co cermets: segregation or metastable carbide?, Journal of Crystal Growth 270 (2004) 219–227, https://doi.org/10.1016/j.jcrysgro.2004.05.101
[10] S. Lay, J. Thibault, and S. Hamar-Thibault, Structure and role of the interfacial layers in VC-rich WC-Co cermets, Philosophical Magazine, 83 (2003) 1175-1190, https://doi.org/10.1080/1478643031000075759
[11] S.A.E. Johansson, G. Wahnstrӧm, A computational study of thin cubic carbide films in WC/Co interfaces, Acta Materialia 59 (2011) 171–181, https://doi.org/10.1016/j.actamat.2010.09.021
[12] J. Weidow, H.-O. Andrén, Grain and phase boundary segregation in WC–Co with small V, Cr or Mn additions, Acta Materialia, 58(2010) 3888-3894, https://doi.org/10.1016/j.actamat.2010.03.038
[13] G. Li, Y. Peng, L. Yan, T. Xu, J. Long, F. Luo, Effects of Cr concentration on the microstructure and properties of WC-Ni cemented carbides, Journal of Materials Research and Technology, 9 (2020) 902-907, https://doi.org/10.1016/j.jmrt.2019.11.030
[14] H.L. de Villiers Lovelock, Powder/processing/structure relationships in WC-Co thermal spray coatings: A review of the published literature, Journal of Thermal Spray Technology, 7 (1998) 357-373, https://doi.org/10.1361/105996398770350846
[15] J. Kim, Y. Jae Suh, I. Kang, First-principles calculations of the phase stability and the elastic and mechanical properties of η-phases in the WC-Co system, Journal of Alloys and Compounds 656 (2016) 213-217, http://dx.doi.org/10.1016/j.jallcom.2015.09.214
[16] H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, 2000, p. 253
[17] V.B. Voitovich, V.V. Sverdel, R.F. Voitovich, E.I. Golovko, Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500–800 °C, International Journal of Refractory Metals and Hard Materials, 14 (1996) 289-295, https://doi.org/10.1016/0263-4368(96)00009-1