• Xiaoming Du School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, People’s Republic of China
  • Zhixuan Lu School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, China
  • Shuang Guo School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, China
Keywords: aluminum matrix composites, graphene, dynamic mechanical properties, numerical simulation


The effects of the strain rate of dynamic loading, volume fraction, shapes and orientation of graphene on the dynamic mechanical properties, deformation and damage of graphene/7075Al composites were simulated using the finite element method, and the damage mechanism of the composites under dynamic load was revealed. The flow strain-stress curves were obtained. The effect of strain rates on the flow stress of the composites was analyzed. The results show that graphene/7075Al composites exhibit a significant strain rate effect. With an increase in the volume fraction of graphene, the yield strength of the composites increases and the composites have significant stress-softening characteristics at a strain rate of 10000 s–1, leading to a reduced strain-hardening effect. The shape and orientation of graphene have an important influence on the dynamic mechanical properties and the extent of damage made to the composites. The flow stress of the composites increases with varying the graphene shape and orientation in the following order, respectively: prism < cylinder < platelet < disc and 0°< 3D < 90° < 45°. The extent of the damage to the composites increases in the following order: disc < platelet < cylinder < prism and 0° < 3D < 90° < 45°. The dynamic failure mechanism of graphene/7075Al composites is interface damage.


1 C. H. Jeon, Y. H. Jeong, J. J. Seo, H. N. Tien, S. T. Hong, Y. J. Yum, S. H. Hur, K. J. Lee, Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing, Int. J. Precis. Eng. Manuf., 15 (2014), 1235-1239, doi: 10.1007/s12541-014-0462-2.
2 K. K. Alaneme, M. O. Bodunrin, Corrosion behavior of aluminareinforced aluminium (6063) metal matrix composites, Journal of Minerals & Materials Characterization & Engineering ,10 (2011)12, 1153-1165 , doi: 10.4236/jmmce.2011.1012088.
3 V. Chak, H. Chattopadhyay, T. L. Dora, A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites, Journal of Manufacturing Processes, 56 (2020), 1059-1074, doi: 10.1016/j.jmapro.2020.05.042.
4 M. Kok, Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, Journal of Materials Processing Technology 161(2005) 3, 381-387, doi: 10.1016/j.jmatprotec.2004.07.068.
5 N. S. Pourmand, H. Asgharzadeh, Aluminum Matrix Composites Reinforced with Graphene: A Review on Production, Microstructure, and Properties, Critical Reviews In Solid State and Materials Sciences, (2019), 1-49, doi: 10.1080/10408436.2019.1632792.
6 W. Yang, Q. Zhao, L. Xin, J. Qiao, J. Zou, P. Shao, Z. Yu, Q. Zhang, G. Wu, Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method. Journal of Alloys and Compounds, 732, (2018), 748-758, doi: 10.1016/j.jallcom.2017.10.283.
7 M. Cao, Y. Luo, Y. Xie, Z. Tan, G. Fan, Q. Guo,Y. Su, Z. Li, D. B. Xiong, The influence of interface structure on the electrical conductivity of graphene embedded in aluminum matrix. Advanced Materials Interfaces, 6, (2019)13, 1900468, doi:
8 A. Lu, L. Zhao, Y. Liu, Z.Li, D. B. Xiong, J. Zou, Q. Guo, Enhanced damping capacity in graphene–Al nanolaminated composite pillars under compression cyclic loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51(2020)4, 1463–1468, doi: 10.1007/s11661-020-05632-4.
9 S. N. Alam, L. Kumar, Mechanical properties of aluminum based metal matrix composites reinforced with graphite nanoplatelets, Materials Science and Engineering A, 667 (2016), 16-32, doi:
10 J. Li, Y. Xiong, X. Wang, S. Yan, C. Yang, W. He, J. Chen, S. Wang, X. Zhang, S. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Materials Science and Engineering A, 626 (2015), 400-405, doi: 10.1016/j.msea.2014.12.102.
11 S. Shin, H. Choi, J. Shin, D. Bae, Strengthening behavior of few-layered graphene/aluminum composites, Carbon, 82 (2015), 143-151, doi: 10.1016/j.carbon.2014.10.044.
12 B. L. Dasari, M. Morshed, J. M. Nouri, D. Brabazon, S. Naher, Mechanical properties of graphene oxide reinforced aluminium matrix composites, Composites Part B Engineering, 145 (2018), 136-144, doi: 10.1016/j.compositesb.2018.03.022.
13 C. M. Friend, A. C.Nixon, Impact response of short δ-alumina fibre/aluminiumalloy metal matrix composites, Journal of Materials Science, 23(1988) 6, 1967-1975, doi: 10.1007/bf01115758.
14 Z. H.Tan, B. J. Pang, B. Z. Gai, G. H. Wu, B. Jia, The dynamic mechanical response of sic particulate reinforced 2024 aluminum matrix composites, Materials Letters, 61(2007) 23-24, 4606-4609, doi: 10.1016/j.matlet.2007.02.069.
15 S. Yadav, D. R. Chichili, K. T. Ramesh, The mechanical response of a 6061-T6 Al/Al2O3 metal matrix composite at high rates of deformation, Acta Metallurgica et Materialia, 43(1995) 12, 4453-4464, doi: 10.1016/0956-7151(95)00123-d.
16 C. C. Perng , J. R. Hwang , J. L. Doong, High strain rate tensile properties of an (Al2O3 particles)-(Al alloy 6061-T6) metal matrix composite, Materials Science and Engineering A, 171(1993) 1-2, 213-221, doi: 10.1016/0921-5093(93)90408-7.
17 L.M. Tham , M. Gupta , L. Cheng, Predicting the failure strains of Al/SiC composites with reacted matrix–reinforcement interfaces, Materials Science & Engineering A, , 354(2003) 1, 369-376, doi: 10.1016/S0921-5093(03)00040-6.
18 S. B. Prabu , L. Karunamoorthy, Microstructure-based finite element analysis of failure prediction in particle-reinforced metal–matrix composite, Journal of Materials Processing Tech, 207(2008) 1-3, 53-62, doi: 10.1016/j.jmatprotec.2007.12.077.
19 Y. Li, K. T. Ramesh, Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain, Acta Materialia, 46 (1998) 16, 5633-5646, doi: 10.1016/S1359-6454(98)00250-X.
20 Y. Song, Y. Ma, K. Zhan, Simulations of deformation and fracture of graphene reinforced aluminium matrix nanolaminated composites, Mechanics of Materials, 142(2019), 103283-103283, doi: 10.1016/j.mechmat.2019.103283.
21 Z. Jia, B. Guan, Y. Zang, Y. Wang, L. Mu, Modified Johnson-Cook model of aluminum alloy 6016-T6 sheets at low dynamic strain rates, Materials Science & Engineering A, 820 (2021), 141565, doi: 10.1016/j.msea.2021.141565.
22 A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review, Int. Mater. Rev. 62 (2017) 5 , 241-302, doi: 10.1080/09506608.2016.1219481.
23 E. Ganz, A. B. Ganz, L. M. Yang, M. Dornfeld, The initial stages of melting of graphene between 4000 K and 6000 K, Phys. Chem. Chem. Phys., 19 (2017) 3756-3762, doi:
24 L. Yang, W. A. Yee, S. L. Phua, J. Kong, H. Ding, J. W. Cheah, X. Lu, A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites, RSC Adv. 2 (2012) , 2208-2210, doi: 10.1039/c2ra00798c.
25 ASM Handbook, Volume 02-Properties and Selection Nonferrous Alloys and Special Purpose Materials, USA, ASM International, (1990).
26 X. Wang , F. Jiang, T. Zhang , L. Wang, Study on dynamic mechanical properties and constitutive model of 10B/Al composite compared with its matrix of high-purity aluminum. Journal of Materials Science, 55 (2019) 2, 748-761, doi: 10.1007/s10853-019-03949-z.
How to Cite

Most read articles by the same author(s)