STUDY ON DESCALING CHARACTERISTICS OF 304 STAINLESS STEEL USING PICKLING AND ABRASIVE WATER JET

  • Jiawei Liu University of Science and Technology Beijing, Haidian, Beijing, China
  • Jingtao Han University of Science and Technology Beijing, Haidian, Beijing, China
  • Ruilong Lu University of Science and Technology Beijing, Haidian, Beijing, China
Keywords: 304 stainless steel, pickling, abrasive water jet, descaling

Abstract

The variability in the surface integrity, mechanical properties and corrosion resistance of the surface layer of 304 stainless steel after scale removal by pickling and an abrasive water jet, removing the oxide and Cr-poor layer was studied comparatively. It was found that the surfaces of the pickling specimens were etched with pits of varying sizes, with Ra of 4.384 µm and Rz of 24.81 µm, while the surface microhardness fluctuated in a range of 200–220 HV. The surfaces of the abrasive water jet specimens exhibited a stack laminar characteristic, Ra of 3.960 µm and Rz of 22.63 µm, while the surface microhardness decreased with an increase in the distance from the surface; the surface microhardness increased from the original 210 HV to 380–390 HV, producing a 1-mm deep work-hardening layer, which had a great impact on the microhardness of the substrate 0–0.3 mm from the surface. For both the pickling specimens and the abrasive water jet specimens, the material tensile strength and yield strength were slightly increased, and the elongation after fracture was significantly reduced. The corrosion resistance of the pickling specimens was better than that of the abrasive water jet specimens. The surface layer of the AWJ specimens generated a Cr-poor layer due to severe secondary oxidation, and the corrosion resistance of the material was reduced.

References

[1] X. Lan, B. Hu, S. F. Wang, W. T. Luo, P. Fu, Magnetic characteristics and mechanism of 304 austenitic stainless steel under fatigue loading, Eng. Failure Anal., 136 (2022), 1-10, doi:10.1016/j.engfailanal.2022.106182
[2] X. W. Liao, H. L. Wei, L. Y. Feng, H. Y. Ban, Low-cycle fatigue behavior for stainless-clad 304+Q235B bimetallic steel, Int. J. Fatigue, 159 (2022), 1-12, doi:10.1016/j.ijfatigue.2022.106831
[3] Stephania Kossman, Leonardo B. Coelho, Alberto Mejias, Alex Montagne, et al. Impact of industrially applied surface finishing processes on tribocorrosion performance of 316L stainless steel, Wear, 456-457 (2020), 1-14, doi:10.1016/j.wear.2020.203341
[4] X. H. Chen, J. Lu, L. Lu, K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scr. Mater., 52 (2005), 1039–104, doi:10.1016/j.scriptamat.2005.01.023
[5] S. N. Geng, J. S. Sun, L. Y. Guo, Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel, Mater. Des., 8 (2015), 1–7, doi:10.1016/j.matdes.2015.08.113
[6] E. Tcharkhtchi-Gillard, M. Benoit, P. Clavier, B. Gwinner, et al. Kinetics of the oxidation of stainless steel in hot and concentrated nitric acid in the passive and transpassive domains, Corros. Sci., 107 (2016), 182–192, doi:10.1016/j.corsci.2016.02.031
[7] X. B. Li, M. Gao, H. Z. Li, W. W. Xing, et al. Effect of residual hydrogen content on the tensile properties and crack propagation behavior of a type 316 stainless steel, Int. J. Hydrogen Energy, 44 (2019), 25054-25063, doi:10.1016/j.ijhydene.2019.07.131
[8] Yuvaraj Natarajan, Pradeep Kumar Murugesan, Mugilvalavan Mohan, Shakeel Ahmed Liyakath Ali Khan, Abrasive Water Jet Machining process: A state of art of review, Journal of Manufacturing Processes, 49 (2020), 271-322, doi:10.1016/j.jmapro.2019.11.030
[9] K. Balaji, M. Siva Kumar, N. Yuvaraj, Multi objective taguchi–grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel, Applied Soft Computing Journal, 102 (2021), 1-25, doi:10.1016//j.asoc.2020.107075
[10] W. X. Wang, Z. J. Zheng, C. Y. Zhou. Effect of heat treatment on the mechanical properties of surface shot blasted nanocrystalline 304 stainless steel, Heat Treatment of Metal, 43 (2018) 11, 84-88, doi:10.13251/j.issn.0254-6051.2018.11.019
[11] N. Na, H. B. Wu, J. M. Cao, G. Niu, L. X. Xu, Effect of cold deformation on the organization and properties of 304 austenitic stainless steel, Hot Working Technology, 47 (2018) 4, 62-66, doi:10.14158/j.cnki.1001-3814.2018.04.015
[12] Y. Guo, F. Q. Dai, S. T. Hu ,Y. Gao, Effect of Annealing Time on Oxides Phases and Morphology along Oxidized Depth of Fe-3%Si Steel during Decarburization, ISIJ Int., 59 (2019) 1, 152-160, doi:10.2355/isijinternational.isijint-2018-441
[13] M. Chen, C. H. Jiang, Z. Xu, Vincent Ji, Surface layer characteristics of SAF2507 duplex stainless steel treated by stress shot peening, Appl. Surf. Sci., 481 (2019), 226-233, dio:10.1016/j.apsusc.2019.03.045
[14] Y. Sun, D Zhang, L. J. Wu, Q. M. Wang, Analysis of the degree of influence of material residual stress on hardness testing, Journal of East China University of Science and Technology (Natural Science Edition), 38 (2012) 5, 652-656, doi:10.14135/j.cnki.1006-3080.2012.05.022
[15] S. CARLSSON, P. -L. LARSSON, On the determination of residual stress and strain fields by sharp indentation testing. Part II: experimental investigation. Acta Mater., 49 (2001), 2193-2203, doi:10.1016/S1359-6454(01)00123-9
[16] J. P. Nobre, A. M. Dias, M. Kornmeier, An empirical methodlogy to estimate a local yield stress in work-hardened surface layers, Society for Experimental Mechanics, 44 (2004) 1, 76-84, doi:10.1177/0014485104039755
[17] T. Wang, H. Y. Zhang, W Liang, Hydrogen embrittlement fracture mechanism of 430 ferritic stainless steel: The significant role of carbides and dislocations, J. Mater. Sci. Eng. A, 829 (2022), 1-13, doi:10.1016/jmsea.2021.142043
[18] Y. H. Fan, B. Zhang, J. Q. Wang, E.-H. Han, W. Ke, Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel, J. Mater. Sci. Technol., 35 (2019), 2213-2219, doi:10.1016/j.jmst.2019.03.043
[19] X. Y. Wang, D. Y. Li, Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel, Electrochim. Acta, 47 (2002), 3939–3947, doi:10.1016/S0013-4648(02)00365-1
Published
2022-10-05
How to Cite
1.
Liu J, Han J, Lu R. STUDY ON DESCALING CHARACTERISTICS OF 304 STAINLESS STEEL USING PICKLING AND ABRASIVE WATER JET. MatTech [Internet]. 2022Oct.5 [cited 2025May16];56(5):507–513. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/474