EFFECTS OF A Cu ADDITION ON THE CORROSION RESISTANCE OF LOW-ALLOY PRE-HARDENED PLASTIC MOLD STEEL

  • Xuan Chen School of Materials Science and Engineering, Shanghai University
  • Jiayuan Li School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • Zhi Li School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • Junwan Li School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • Xiaochun Wu School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Keywords: copper, plastic mold steel, corrosion resistance, electrochemical analysis, salt spray test

Abstract

The influence of Cu on the corrosion performance of low-alloy Cu-bearing pre-hardened plastic mold steel was investigated and compared with non-Cu-bearing mold steel using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), salt-spray tests and electrochemical impedance spectroscopy (EIS). The results reveal that the formed rust layer is composed of α-FeOOH, β-FeOOH, γ-FeOOH, Fe3O4 and large amounts of amorphous compounds. The corrosion product in the early stages of corrosion is loose and porous but becomes denser and more tightly bound to the steel matrix in the later stages, and the corrosion rate of Cu-bearing steel decreases with the increasing corrosion time. With a further Cu addition, the free-corrosion potential of Cu-bearing steel increases and, consequently, the electrochemical impedance, the capacitive single semicircular arc on the impedance spectra and the charge transfer resistance are also significantly enhanced. Therefore, Cu effectively enhances the corrosion resistance of pre-hardened mold steel, prolonging its service life and ensuring a high quality and shape fidelity of molded plastic products.

References

1. H. Hoseiny, U. Klement, P. Sotskovszki and J. Andersson, Comparison of the microstructures in continuous-cooled and quench-tempered pre-hardened mould steels, Mater Design, 32 (2011), 1, 21-28, 10.1016/j.matdes.2010.06.045.
2. R. Wu, J. Li, W. Li, X. Wu, X. Jin, S. Zhou and L. Wang, Effect of metastable austenite on fracture resistance of quenched and partitioned (Q&P) sheet steels, Mat Sci Eng. A, 657 (2016), 57-63, 10.1016/j.msea.2016.01.051.
3. R. Wu, Y. Zheng, X. Wu and X. Li, Effect of titanium on the microstructure and hardness uniformity of non-quenched and tempered prehardened steel for large-section plastic mould, Ironmak Steelmak, 44 (2017), 1, 17-22, 10.1080/03019233.2016.1155830.
4. Z. Zhang, X.-c. Wu, Q. Zhou and L.-l. Duan, Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds, Int. J. Miner. Metall. Mater. 22 (2015), 8, 842-850, 10.1007/s12613-015-1141-8.
5. H. Hoseiny, F. G. Caballero, R. M’Saoubi, B. Högman, J. Weidow and H. O. Andrén, The influence of heat treatment on the microstructure and machinability of a prehardened mold steel, Metall. Mater. Trans. A 46 (2015), 5, 2157-2171, 10.1007/s11661-015-2789-4.
6. D. Firrao, P. Matteis, P. Russo Spena and R. Gerosa, Influence of the microstructure on fatigue and fracture toughness properties of large heat-treated mold steels, Mat Sci Eng. A, 559 (2013), 371-383, 10.1016/j.msea.2012.08.113.
7. H. Liu, P. Fu, H. Liu, C. Sun, N. Du and D. Li, Limitations of the homogenization process of bulk martensitic mold steel-depending on the comprehensive manifestation of various strengthening, J Mater Sci Technol, 117 (2022), 120-132, 10.1016/j.jmst.2021.10.046.
8. H. Liu, P. Fu, H. Liu, C. Sun, X. Ma and D. Li, Microstructure evolution and mechanical properties in 718H pre-hardened mold steel during tempering, Mat Sci Eng. A, 709 (2018), 181-192, 10.1016/j.msea.2017.10.047.
9. H. Liu, P. Fu, H. Liu, Y. Cao, C. Sun, N. Du and D. Li, Effects of rare earth elements on microstructure evolution and mechanical properties of 718H pre-hardened mold steel, J Mater Sci Technol, 50 (2020), 245-256, 10.1016/j.jmst.2019.12.035.
10. F. Beaudet, C. Blais, H. Lehuy, B. Voyzelle, G. L'espérance, J.-P. Masse and M. Krishnadev, Improvement of hardenability and static mechanical properties of P20+ 0.5 Ni mold steel through additions of vanadium and boron, ISIJ Int. 52 (2012), 3, 424-433, 10.2355/isijinternational.52.424.
11. D. Firrao, P. Matteis, G. Ubertalli, G. Scavino, M. Ienco, A. Parodi, M. Pinasco, E. Stagno, R. Gerosa and B. Rivolta, Heat treatment and failure risk of large automotive plastic molds: A fracture mechanics approach and property assessment, La Metallurgia Italiana (2013), 11-12, 43-51.
12. H. S. M. Lopes, J. A. Moreto, M. D. Manfrinato, N. C. Da Cruz, E. C. Rangel and L. S. Rossino, Micro abrasive wear behaviour study of carburization and ion plasma nitriding of P20 steel, Mater Res-Ibero-am J, 19 (2016), 3, 686-694, 10.1590/1980-5373-MR-2015-0721.
13. I. Samusawa and S. Nakayama, Influence of plastic deformation and cu addition on corrosion of carbon steel in acidic aqueous solution, Corros. Sci. 159 (2019), 8, 10.1016/j.corsci.2019.108122.
14. H. Hoseiny, F. G. Caballero, B. Hogman, D. San Martin, C. Capdevila, L. G. Nordh and H. O. Andren, The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel, JMatS 47 (2012), 8, 3613-3620, 10.1007/s10853-011-6208-y.
15. F. J. G. Silva, R. P. Martinho, R. J. D. Alexandre and A. P. M. Baptista, Increasing the wear resistance of molds for injection of glass fiber reinforced plastics, Wear 271 (2011), 9-10, 2494-2499, 10.1016/j.wear.2011.01.074.
16. E. Boztepe, A. C. Alves, E. Ariza, L. A. Rocha, N. Cansever and F. Toptan, A comparative investigation of the corrosion and tribocorrosion behaviour of nitrocarburized, gas nitrided, fluidized-bed nitrided, and plasma nitrided plastic mould steel, Surf. Coat. Technol, 334 (2018), 116-123, 10.1016/j.surfcoat.2017.11.033.
17. M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki and H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe–Cr alloy film analyzed by mössbauer spectroscopy and with synchrotron radiation x-rays, Corros. Sci, 45 (2003), 2, 381-394, 10.1016/S0010-938X(02)00093-8.
18. T. Kamimura and M. Stratmann, The influence of chromium on the atmospheric corrosion of steel, Corros. Sci. 43 (2001), 3, 429-447, 10.1016/j.corsci.2013.05.008.
19. Y. Qian, C. Ma, D. Niu, J. Xu and M. Li, Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels, Corros. Sci. 74 (2013), 424-429, 10.1016/j.corsci.2013.05.008.
20. Y. H. Qian, D. Niu, J. J. Xu and M. S. Li, The influence of chromium content on the electrochemical behavior of weathering steels, Corros. Sci. 71 (2013), 72-77, 10.1016/j.corsci.2013.03.002.
21. I. Díaz, H. Cano, P. Lopesino, D. de la Fuente, B. Chico, J. A. Jiménez, S. F. Medina and M. Morcillo, Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments, Corros. Sci. 141 (2018), 146-157, 10.1016/j.corsci.2018.06.039.
22. S. Suzuki, M. Saito, M. Kimura, T. Suzuki, H. Kihira and Y. Waseda, A new method for describing the atomic-scale structure of rusts formed on the iron based alloy surfaces, ISIJ Int. 43 (2003), 3, 366-372, 10.2355/isijinternational.43.366.
23. M. Kimura, T. Suzuki, G. Shigesato, H. Kihira and S. Suzuki, Characterization of nanostructure of rusts formed on weathering steel, ISIJ Int. 42 (2002), 12, 1534-1540, 10.2355/isijinternational.42.1534.
24. M. Morcillo, I. Díaz, B. Chico, H. Cano and D. De La Fuente, Weathering steels: From empirical development to scientific design. A review, Corros. Sci. 83 (2014), 6-31, 10.1016/j.corsci.2014.03.006.
25. X. Hao, J. Dong, J. Wei, I.-I. N. Etim and W. Ke, Effect of cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank, Corros. Sci. 121 (2017), 84-93, 10.1016/j.corsci.2017.03.012.
26. J. H. Hong, S. H. Lee, J. G. Kim and J. B. Yoon, Corrosion behaviour of copper containing low alloy steels in sulphuric acid, Corros. Sci. 54 (2012), 174-182, 10.1016/j.corsci.2011.09.012.
27. T. K. Kandavel, R. Chandramouli and P. Karthikeyan, Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels, Mater Design, 40 (2012), 336-342, 10.1016/j.matdes.2012.03.033.
28. H. Su, X.-B. Luo, C.-F. Yang, F. Chai and H. Li, Effects of cu on corrosion resistance of low alloyed steels in acid chloride media, J Iron Steel Res Int, 21 (2014), 6, 619-624, 10.1016/S1006-706X(14)60096-0.
29. S. Park, J. Hong, I. Hwang, J.-Y. Ahn, E. Y. Cho, J. Park, E. K. Cho, D. B. Shin and J. H. Lee, Comprehensive geriatric assessment in elderly patients with newly diagnosed aggressive non-hodgkin lymphoma treated with multi-agent chemotherapy, J. Geriatr. Oncol. 6 (2015), 6, 470-478, 10.1016/j.jgo.2015.10.183.
30. Y.-W. Jang, J.-H. Hong and J.-G. Kim, Effects of copper on the corrosion properties of low-alloy steel in an acid-chloride environment, Met. Mater.-Int. 15 (2009), 4, 623-629, 10.1007/s12540-009-0623-5.
31. Y. Zhou, J. Chen, Y. Xu and Z. Liu, Effects of Cr, Ni and cu on the corrosion behavior of low carbon microalloying steel in a cl− containing environment, J Mat Sci Tech, 29 (2013), 2, 168-174, 10.1016/j.jmst.2012.12.013.
32. T. Ishikawa, T. Ueno, A. Yasukawa, K. Kandori, T. Nakayama and T. Tsubota, Influence of metal ions on the structure of poorly crystallized iron oxide rusts, Corros. Sci. 45 (2003), 5, 1037-1049, 10.1016/S0010-938X(02)00150-6.
33. Q. C. Zhang, J. S. Wu, J. J. Wang, W. L. Zheng, J. G. Chen and A. B. Li, Corrosion behavior of weathering steel in marine atmosphere, Mater. Chem. Phys. 77 (2003), 2, 603-608, 1001-1560(2015)48:2<19:MNHYGY>2.0.TX;2-Y.
34. L. Hao, S. Zhang, J. Dong and W. Ke, Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments, Corros. Sci. 53 (2011), 12, 4187-4192, 10.1016/j.corsci.2011.08.028.
35. Y.-S. Choi, J.-J. Shim and J.-G. Kim, Effects of Cr, Cu, Ni and ca on the corrosion behavior of low carbon steel in synthetic tap water, J. Alloys Compd. 391 (2005), 1, 162-169, 10.1016/j.jallcom.2004.07.081.
36. L. Y. Lan, C. L. Qiu, D. W. Zhao, X. H. Gao and L. X. Du, Analysis of martensite-austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel, JMatS 47 (2012), 11, 4732-4742, 10.1007/s10853-012-6346-x.
37. Z. Zhang, X. C. Wu, N. Li and Y. A. Min, Alloy optimisation of bainitic steel for large plastic mould, Mater. Sci. Technol. 31 (2015), 14, 1706-1714, 10.1179/1743284714Y.0000000744.
38. C. Zhang, K. Yamanaka, H. Bian and A. Chiba, Corrosion-resistant carbide-reinforced martensitic steel by cu modification, npj Materials Degradation 3 (2019), 1, 10.1038/s41529-019-0092-3.
39. J. Guo, S. Yang, C. Shang, Y. Wang and X. He, Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a cl− containing environment, Corros. Sci. 51 (2009), 2, 242-251, 10.1016/j.corsci.2008.10.025.
40. X. Q. Liu, Z. L. Liu, J. D. Hu, Z. G. Hou, Q. C. Tian and H. Z. Wang, The corrosion behavior of Cu/Cr containing tube pile steel in half-immersion environment, Anti-Corros Method M, 63 (2016), 4, 281-288, 10.1108/ACMM-10-2014-1441.
41. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano and T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corros. Sci. 36 (1994), 2, 283-299, 10.1016/0010-938X(94)90158-9.
42. T. Ishikawa, K. Takeuchi, K. Kandori and T. Nakayama, Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions, Colloids Surf. Physicochem. Eng. Aspects 266 (2005), 1-3, 155-159, 10.1016/j.colsurfa.2005.06.024.
43. T. Ishu, T. Ujiro, E. Hamada, S. Ishikawa and Y. Kato, A mechanism of improvement in the corrosion resistance of ferritic stainless steels by cu addition, Tetsu to Hagane, 97 (2011), 8, 441-449, 10.2355/tetsutohagane.97.441.
Published
2022-08-17
How to Cite
1.
Chen X, Li J, Li Z, Li J, Wu X. EFFECTS OF A Cu ADDITION ON THE CORROSION RESISTANCE OF LOW-ALLOY PRE-HARDENED PLASTIC MOLD STEEL. MatTech [Internet]. 2022Aug.17 [cited 2025Jun.15];56(4):381–388. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/465