EFFECT OF SIMILAR ATOM SUBSTITUTION ON THE GLASS FORMING ABILITY OF Al86Ni9(Y, Sm)5 METALLIC GLASSES
Abstract
The effect of similar atom substitution on the glass forming ability (GFA) of Al86Ni9(Y, Sm)5 (x = (0, 1, 1.5, 2, 3, 4, 5)) metallic glasses (MGs) was explored on the basis of the theory of the Fermi sphere-Brillouin zone interaction. Similar atom substitution (Sm) mainly affects the static structure between Al atoms and Y (Sm) atoms, changing the diameter of the pseudo-Brillouin zone (KP). Its effect on the Fermi level and Brillouin zone size is characterized with spectroscopy experiments. The |δ|=|KP – 2KF| criterion is used to evaluate the effect of the Sm element substitution on the GFA. This criterion can help us obtain the optimal GFA composition (Al86Ni9Y3.5Sm1.5) of Al86Ni9(Y, Sm)5 amorphous alloys, confirmed also by the experimental results.
References
[2] B.J. Yang, W.Y. Lu, J.L. Zhang, J.Q. Wang, E Ma, Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses, Scientific reports, 7 (2017), 11053, doi:10.1038/s41598-017-11504-6
[3] Y.J. Zhang, H. Zhou, X.H. Sun, Y. Liu, Y. Wang, J.B. Lian, C.X. Wang, N.C. Wu, Correlation between glasses forming ability and density of states for the micro-alloying Al-based metallic glasses, Alloys Compd., 826 (2020), 154237, doi:10.1016/j.jallcom.2020.154237
[4] Y. Yang, J. Zhou, F. Zhu, Determining the three-dimensional atomic structure of an amorphous solid, Nature, 592 (2021), 60-64, doi:10.1038/s41586-021-03354-0
[5] F. Ren, L.G. Ward, T. Williams, K.J. Laws, C. Wolverton, Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments, Sci. Adv., 4 (2018), 1566, doi:10.1126/sciadv.aaq1566
[6] J. Xiong, S.Q. Shi, T.Y. Zhang, Machine learning prediction of glass-forming ability in bulk metallic glasses, Comp. Mater. Sci., 192 (2021), 110362, doi:10.1016/j.commatsci.2021.110362
[7] M.X. Li, Y.T. Sun, C. Wang, L.W. Hu, S. Sohn, J. Schroers, W.H. Wang, Y.H. Liu, Data-driven discovery of a universal indicator for metallic glass forming ability, Nat. Commun., 21 (2022), 165-172, doi:10.1038/s41563-021-01129-6
[8] Y.T. Sun, H.Y. Bai, M.Z. Li, W.H. Wang, Machine learning approach for prediction and understanding of glass-forming ability, Phys. Chem. Lett., 8 (2017), 3434-3439, doi:10.1021/acs.jpclett.7b01046
[9] X.D. Liu, X. Li , Q.F. He , D.D. Liang, Z.Q. Zhou, J. Ma, Y. Yang, J. Shen, Machine learning-based glass formation prediction in multicomponent alloys, Acta Mater., 201 (2020), 182-190, doi:10.1016/j.actamat.2020.09.081
[10] D. Turnbull, Under what conditions can a glass be formed, Cont. Phys., 10 (1969), 473-488, doi:10.1080/00107516908204405
[11] W.L. Johnson, J.H. Na, M.D. Demetriou, Quantifying the origin of metallic glass formation, Nat. Commun., 7 (2016), 103131, doi:10.1038/ncomms10313
[12] A. Inoue, K. Ohtera, T. Zhang, T. Masumoto, Aluminum-Based Amorphous Alloys with Tensile Strength above 980 MPa (100 kg/mm2), Appl. Phys., 27 (1988), 479, doi:10.1143/JJAP.27.L479
[13] D.B. Miracle, The efficient cluster packing model-An atomic structural model for metallic glasses, Acta Mater., 54 (2006), 4317-4336, doi:10.1016/j.actamat.2006.06.002
[14] D.B. Miracle, A structural model for metallic glasses, Nat. Mater., 3 (2004), 697-702, doi:10.1038/nmat1219
[15] K.J. Laws, D.B. Miracle, M. Ferry, A predictive structural model for bulk metallic glasses, Nat. Commun., 6 (2015), 8123, doi:10.1038/ncomms9123
[16] N.C. Wu, D. Kan, L. Zuo, J.Q. Wang, Efficient atomic packing-chemistry coupled model and glass formation in ternary Al-based metallic glasses, Intermetallics, 39 (2013), 1-4, doi:10.1016/j.intermet.2013.03.008
[17] N.C. Wu, M. Yan, L. Zuo, J.Q. Wang, Correlation between medium-range order structure and glass-forming ability for Al-based metallic glasses, Appl. Phys., 115 (2014), 043523, doi:10.1063/1.4863404
[18] H.W. Sheng, Y.Q. Cheng, P.L. Lee, S.D. Shastri, E. Ma, Atomic packing in multicomponent aluminum-based metallic glasses, Acta Mater., 56 (2008), 6264-6272, doi:10.1016/j.actamat.2008.08.049
[19] X.M. Shi, X.D. Wang, Q. Yu, Q.P. Cao, D.X. Zhang, T.D. Hu, L.H. Lai, H.L. Xie, T.Q. Xiao, J.Z. Jiang, Structure alterations in Al-Y-based metallic glasses with La and Ni addition, Appl. Phys., 119 (2016), 114904, doi:10.1063/1.4944653
[20] S.R. Nagel, J. Tauc, Nearly-free-electron approach to the theory of metallic glass alloys, Phys. Rev. Lett., 35 (1975), 380,doi:10.1103/PhysRevLett.35.380
[21] S. Hosokawa, H. Sato, N. Happo, K. Mimura, Y. Tezuka, T. Ichitsubo, E. Matsubara, N. Nishiyama, Electronic structure of Pd42.5Ni7.5Cu30P20 an excellent bulk metallic glass former: Comparison to the Pd40Ni40P20 reference glass, Acta Mater., 55 (2007), 3413-3419, doi:10.1016/j.actamat.2007.01.041
[22] P.F. Guan, T. Fujita, Hirata A, Y.H. Liu, M.W. Chen, Structural Origins of the Excellent Glass Forming Ability of Pd40Ni40P20, Rev. Lett., 108 (2012), 175501, doi:10.1103/PhysRevLett.108.175501
[23] F.M. Alamgir, H. Jain, A.C. Miller, D.B. Williams, R.B. Schwarz, X-ray photoelectron spectroscopy analysis of bulk Pd-Ni-P metallic glasses, Phil. Mag., 79 (1999), 239-247, doi:10.1080/13642819908206795
[24] F.M. Alamgir, H. Jain, R.B. Schwarz, O. Jin, D.B. Williams, Electronic structure of Pd-based bulk metallic glasses, Non-Cryst. Solids, 274 (2000), 289-293, doi:10.1016/S0022-3093(00)00192-7
[25] M. Reza, J.L. Kevin, F. Michael, Amorphous phase stability and the interplay between electronic structure and topology, Acta Mater., 131 (2017), 131-140, doi:10.1016/j.actamat.2017.03.070
[26] P. Haussler, Interrelations between atomic and electronic structures—liquid and amorphous metals as model systems, Phys. Rep., 222 (1992), 65-143, doi:10.1016/0370-1573(92)90018-U
[27] C.D. Gelatt, Jr., A.R. Williams, V.L. Moruzzi, Theory of bonding of transition metals to nontransition metals, Phys. Rev. B, 27 (1983), 2005, doi:10.1103/PhysRevB.27.2005
[28] U. Mizutani, T. Takeuchi, H. Sat, Interpretation of the Hume-Rothery rule in complex electron compounds: γ-phase Cu5Zn8 Alloy, FK-type Al30Mg40Zn30 and MI-type Al68Cu7Ru17Si8 1/1–1/1-1/1 approximants, Prog. Mater. Sci., 49 (2004), 227-261, doi:10.1016/S0079-6425(03)00035-5
[29] M. Stiehler, J. Giegengack, J. Barzola-Quiquia, J. Rauchhaupt, S. Schulze, P. Haussler, Peculiarities in the plasma resonance of binary amorphous Al-TM alloys, Phys. Chem. Solids, 68 (2007), 1244-1248,doi:10.1016/j.jpcs.2006.12.020
[30] G. Han, J.B. Qiang, F.W. Li, L. Yuan, H. Quan, Q. Wang, Y.M. Wang, C. Dong, P. Haussler, The e/a values of ideal metallic glasses in relation to cluster formulae, Acta Mater., 59 (2011), 5917-5923, doi:10.1016/j.actamat.2011.05.065
[31] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Saunders College, Philadelphia 1976, 116.
[32] G.T.D. Laissardière, D.M. Nguyen, L. Magaud, J.P. Julien, F. Cyrot-Lackmann, D. Mayou, Electronic structure and hybridization effects in Hume-Rothery alloys containing transition elements, Phys. Rev. B, 52 (1995), 7920, doi:10.1103/PhysRevB.52.7920
[33] O.L. Krivanek, J.H. Paterson, ELNES of 3d transition-metal oxides: I. Variations across the periodic table, Ultramicroscopy, 32 (1990), 313-318, doi:10.1016/0304-3991(90)90077-Y
[34] D.H. Pearson, C.C. Ahn, B. Fultz, White lines and d-electron occupancies for the 3d and 4d transition metals, Phys. Rev. B, 47 (1993), 847l, doi:10.1103/PhysRevB.47.8471
[35] H.B. Yu, W.H. Wang, H.Y. Bai, An electronic structure perspective on glass-forming ability in metallic glasses, Appl. Phys. Lett., 96 (2010), 081902, doi:10.1063/1.3327337