EFFECT OF INCLUSIONS ON THE SOFTENING MECHANISM OF Al 1235 ALLOY DURING THERMAL DEFORMATION

  • Wenduan Yan Minnan University of Science and Technology, Quanzhou 362700, China
  • Gaosheng Fu Fuzhou University, Fuzhou 350108, China
  • Hao Huang Minnan University of Science and Technology, Quanzhou 362700, China
  • Mingdeng Zhong Minnan University of Science and Technology, Quanzhou 362700, China
Keywords: Al 1235 alloy, TEM, softening mechanism, oxide inclusions, second-phase particles

Abstract

The effect of inclusions on the softening mechanism of a pure aluminum alloy is studied with TEM, EDAX and SAED. Oxide inclusions and iron-rich second-phase particles are the main inclusions in Al 1235 alloy. The phase of iron-rich particles in the alloy is phase AlFe3 with a lattice constant of 5.79 and crystal band axis of Š 231Æ. During thermal deformation, coarser inclusions in the alloy are beneficial to the nucleation of dynamic recrystallization, but they have a great effect on the separation of the alloy matrix. Nucleation and growth of dynamic-recrystallization grains are restricted by finer inclusions, reducing the possibility of aluminum-matrix fracture. The preferred places for dynamic-recrystallization nucleation include boundaries at the intersection of three grains, the dislocation plug area, the surface of the coarse oxide inclusions or the coarse second-phase inclusions.

References

1 H. Song, W. H. Hao, X. W. Mu, F. Q. Zhao, X. X. Hao, G. H. Geng, Effect of pulse current on the wear behavior of a cold-rolled commercially pure aluminum sheet, Strength of Materials, 53 (2021) 5, 376-386, doi:10.1007/s11223-021-00257-3
2 K. Kondoh, J. Umeda, H. Sannomiya, Interfacial reaction behavior and mechanical properties of pure aluminum and magnesium alloy dissimilar materials fabricated by hot press and heat treatment, Materials Characterization, 157 (2019), 109879, doi:10.1016/j.matchar.2019.109879
3 H. R. Ammar, The impact of alloying elements addition on the flow behavior of aluminum alloys, Transactions of the Indian Institute of Metals, 73 (2020) 6, 1605-1609, doi:10.1007/s12666-020-01935-7
4 R. Kumar, A. Gupta, T. R. Dandekar, R. K. Khatikar, Evolution of microstructure and texture during homogenization in a strip cast AA8011 aluminum alloy, Intermetallics, 130 (2021), 107064, doi:10.1016/j.intermet.2020.107064
5 Q. Y. Yang, Y. L. Zhou, Y. B. Tan, Effects of microstructure, texture evolution and strengthening mechanisms on mechanical properties of 3003 aluminum alloy during cryogenic rolling, Journal of Alloys and Compounds, 884 (2021) 1, 161135, doi:10.1016/j.jallcom.2021.161135
6 A. A. Tiamiyu, A. Y. Badmos, A. G. Odeshi, J. A. Szpunar, The influence of temper condition on adiabatic shear failure of AA 2024 aluminum alloy, Materials Science and Engineering A, 708 (2017) dec.21, 492-502, doi:10.1016/j.msea.2017.10.026
7 J. Li, F. Li, Y. An, Characterization of hot deformation behavior for pure aluminum using 3D processing maps, High Temperature Materials Process, 37 (2018), 9-10, doi:10.1515/htmp-2017-0078
8 T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, 60 (2014) 1, 130–207, doi:10.1016/j.pmatsci.2013.09.002
9 M. H?Rtel, B. Bohne, M. Wagner, Microstructural evolution during tension-compression in-plane deformation of a pure aluminum sheet, IOP Conference Series: Materials Science and Engineering, 181 (2017) 1, 12-14, doi.org/10.1088/1757-899X/181/1/012024
10 K. T. Son, M. H. Kim, S. W. Kim, Evaluation of hot deformation characteristics in modified AA5052 using processing map and activation energy map under deformation heating, Journal of Alloys & Compounds, 740 (2018), 96-108, doi.org/10.1016/j.jallcom.2017.12.357
11 Y. V. Gamin, T. K. Akopyan, A. N. Koshmin, Microstructure evolution and property analysis of commercial pure Al alloy processed by radial-shear rolling, Archives of Civil and Mechanical Engineering, 20 (2020) 4, 00143, doi:10.1007/s43452-020-00143-w
12 W. D. Yan, G. S. Fu, H. L. Chen, G. Q. Chen, Effects of oxide inclusions on flow stress behavior of 1235 al alloy during hot compression, Journal of Materials Engineering and Performance, 21 (2012) 10, 2203-2206, doi:10.1007/s11665-012-0152-0
13 G. Q. Chen, G. S. Fu, T. Y. Wei, C. Z. Cheng, J. D. Wang, H. S. Wang, Establishment of dynamic-recrystallization-state diagram for hot deformation of 3003 aluminum alloy, Materiali in Tehnologije, 52 (2018) 3, 341-347, doi:10.17222/mit.2017.176
14 W. D. Yan, G. S. Fu, H. L. Chen, L. L. Song, W. Liu, Texture characteristics of 1235 Al alloy during rolling, Materiali in Tehnologije, 53 (2019) 6, 821-825, doi:10.17222/mit.2018.195
15 Y. L. Ma, Y. C. Huang, X. Zhang, Precipitation thermodynamics and kinetics of the second phase of Al-Zn-Mg-Cu-Sc-Zr-Ti aluminum alloy, Journal of Materials Research and Technology, 10 (2020), 445-452, doi:10.1016/j.jmrt.2020.11.075
16 W. D. Yan, G. S. Fu, Y. H. Xu, W. Q. Lai, H. L. Chen, Effect of Sr addition on the microstructure and properties of the A356 Al alloy, Materiali in Tehnologije, 55 (2021) 3, 109-114, doi:10.17222/mit2020.038
17 C. Zhang, C. Wang, Q. Zhang, Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al-Mg-Si alloy, Journal of Materials Processing Technology, 270 (2019), 323-334, doi:10.1016/j.jmatprotec.2019.03.014
18 B. Wang, Y. Yi, H. He, Effects of deformation temperature on second-phase particles and mechanical properties of multidirectionally-forged 2A14 aluminum alloy, Journal of Alloys and Compounds, 871 (2021), 159459, doi:10.1016/j.jallcom.2021.159459
Published
2022-06-03
How to Cite
1.
Yan W, Fu G, Huang H, Zhong M. EFFECT OF INCLUSIONS ON THE SOFTENING MECHANISM OF Al 1235 ALLOY DURING THERMAL DEFORMATION. MatTech [Internet]. 2022Jun.3 [cited 2024Dec.10];56(3):289–294. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/448