EFFECT OF INITIAL TEMPERATURE ON THE MICROSTRUCTURE AND PROPERTIES OF CRYOGENIC ROLLED AZ31 MAGNESIUM ALLOY
Abstract
By characterizing the properties of a twin cast-rolled AZ31 sheet after cryogenic rolling, the effects of the initial temperature on the microstructure and mechanical properties of the sheet obtained by cryogenic rolling were studied. The results indicate that the hardness of the alloy was a maximum due to the high-density dislocations in the microstructure when the initial temperature was room temperature. The highest yield strength and elongation appeared at the initial temperature of 200 °C, and the microstructure was mainly fine equiaxed grains. It was observed that fine grains increased, and the yield strength and elongation gradually decreased with the increase of the initial temperature. The overall trend of yield strength and elongation increased first and then decreased. Based on the results of different initial temperature treatments, the optimal microstructure and properties of AZ31 magnesium alloy were acquired when the initial temperature was 200 °C.
References
2 Y. H. Zhao, Y. T. Zhu, X. Z. Liao, Z. Horita, T. G. Langdon, Tailoring stacking fualt energy for high ductility and high strength in ultra-fine grained Cu and Its alloy, Applied Physics Letters, 12(2006)89, doi:10.1063/1.2356310
3 Y. H. Zhao, X. Z. Liao, S. Cheng, E. Ma, Y. T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Advanced Materials, 17(2006)18
4 A. Mk, A. Gre, B. Hre, C. Mj, Microstructure refinement, mechanical and biocorrosion properties of Mg–Zn–Ca–Mn alloy improved by a new severe plastic deformation process, Journal of Magnesium and Alloys, (2021)doi: 10.1016/j.jma.2020.11.013
5 K. Gopala Krishna, K. Sivaprasad, K. Venkateswarlu, K. C. Hari Kumar, Microstructural evolution and aging behavior of cryorolled Al–4Zn–2Mg alloy, Materials Science & Engineering A, Feb.15(2012)535, doi: 10.1016/j.msea.2011.12.052
6 S. K. Panigrahi, R. Jayaganthan, Development of ultrafine grained Al–Mg–Si alloy with enhanced strength and ductility, Journal of Alloys & Compounds, 1-2(2009)470, doi: 10.1016/j.jallcom.2008.02.028
7 P. Das, R. Jayaganthan, I. V. Singh, Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy, Materials & Design, 3(2011)32, doi: 10.1016/j.matdes.2010.09.026
8 S. Rawat, B. S. Rawat, A. Gupta, M. K. Pathak, P. K. Pant, EBSD studies on cryorolled LM6 Al alloy, Materials Today: Proceedings, 1(2021)44, doi: 10.1016/j.matpr.2020.12.103
9 Magalhes, D.C.C.; Kliauga, A.M.; Ferrante, M.; Sordi, V.L, Asymmetric cryorolling of AA6061 Al alloy: Strain distribution, texture and age hardening behavior, Materials Science and Engineering A, OCT.24(2018)736, doi: 10.1016/j.msea.2018.08.075
10 JintaoShi, LonggangHou, JinrongZuo, LinzhongZhuang, JishanZhang, Cryogenic rolling-enhanced mechanical properties and microstructural evolution of 5052 Al-Mg alloy, Materials Science & Engineering A, (2017), doi: 10.1016/j.msea.2017.06.087
11 L. U. Yue, M. A. Ru, Y. N. Wang, Texture evolution and recrystallization behaviors of Cu-Ag alloys subjected to cryogenic rolling, Transactions of Nonferrous Metals Society of China, (2015)
12 X. Y. San, X. G. Liang, L. P. Cheng, C. J. Li, X. K., Zhu, Temperature effect on mechanical properties of Cu and Cu alloys, Materials and Design, Mar.(2012)35, doi: 10.1016/j.matdes.2011.08.032
13 X. Y. San, X. G. Liang, Lp. Chen, Z. L. Xia, X. K. Zhu, Influence of stacking fault energy on the mechanical properties in cold-rolling Cu and Cu–Ge alloys, Materials Science & Engineering A, 27(2011)528, doi: 10.1016/j.msea.2011.07.023
14 X. Y. San, X. G. Liang, L. P. Cheng, S. Li, X. K. Zhu, Effect of stacking fault energy on mechanical properties of ultrafine-grain Cu and Cu–Al alloy processed by cold-rolling, Transactions of Nonferrous Metals Society of China, 4(2012)22, doi: 10.1016/S1003-6326(11)61250-8
15 L. P. Cheng, X. G. Liang, X. Y. San, Y. L. Gong, X. K. Zhu, Effect of Stacking Fault Energy on the Mechanical Properties of Cold-Rolling Cu and Cu-Al-Zn Alloys, Advanced Materials Research, (2012)399-401, doi: 10.4028/www.scientific.net/AMR.399-401.708
16 P. Mónica, P. M. Bravo, D. Cárdenas, Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties, Journal of Materials Processing Technology, (2017), doi: 10.1016/j.jmatprotec.2016.08.029
17 W. Wang, L. Ma, S. Chai, W. Zhang, W. Chen, Y. Feng,G. Cui, Role of one direction strong texture in stretch formability for ZK60 magnesium alloy sheet, Materials Science and Engineering A, (2018)730, doi: 10.1016/j.msea.2018.05.113
18 Hongyu Liu, Yang Wang, Bingcheng Li, Xiaochun Ma, Ruizhi Wu, Effect of cryogenic rolling process on microstructure and mechanical properties of Mg-14Li-1Al alloy - ScienceDirect, Materials Characterization, 157, doi: 10.1016/j.matchar.2019.109903
19 D. Guo, L. Ming, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, X. Zhang, High strength and ductility in multimodal-structured Zr, Materials & Design, Feb.(2012)34, doi: 10.1016/j.matdes.2011.08.002
20 Y. Yi, Cryogenic Deformation Behavior and Microstructural Characteristics of 2195 Alloy, Metals, (2021)11, doi: 10.3390/met11091406
21 S. K. Panigrahi, R. Jayaganthan, V. Chawla, Effect of cryorolling on microstructure of Al–Mg–Si alloy, Materials Letters, 17-18(2008)62, doi: 10.1016/j.matlet.2008.01.003
22 L. Zhang, Q. Wang, W. Liao, W. Guo, B. Ye, W. Li, H. Jiang, W. Ding, Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91D magnesium composites reinforced by SiC nanoparticles, Materials Characterization, (2017)126, doi: 10.1016/j.matchar.2017.01.008
23 S. K. Wu, T. S. Chou, J. Y. Wang, The Deformation Textures in an AZ31B Magnesium Alloy, Materials Science Forum, (2003)419-422, doi:10.4028/www.scientific.net/MSF.419-422.527
24 N. Peranio, Y. J. Li, F. Roters, D. Raabe, Microstructure and texture evolution in dual-phase steels: Competition between recovery, recrystallization, and phase transformation, Materials Science & Engineering A, 16-17(2010)527, doi: 10.1016/j.msea.2010.03.028