INFLUENCE OF ARTIFICIAL SALIVA AND ESSENTIAL OIL-BASED SOLUTIONS ON THE ELECTRICAL PARAMETERS OF NITINOL AND STAINLESS STEEL ARCHWIRES
Abstract
This paper analyzes the variation in the electrical characteristics of NiTi and stainless steel archwires under exposure to different liquid media and temperatures. The archwires were enclosed in a microfluidic chip to obtain a controlled environment, mimicking oral cavity conditions. Five liquids were selected for testing: artificial saliva, Listerine mouthwash, cinnamon essential oil added to artificial saliva, eucalyptus essential oil added to artificial saliva and orange essential oil added to artificial saliva. Impedance spectroscopy was performed at three temperatures, (25, 37 and 50) °C, and in three different time intervals: at the start of the experiment, after three weeks and after six weeks of exposure. The impedance, its modulus and phase, and Nyquist diagrams were plotted, as well as the root-mean-square (RMS) deviation parameter. The results showed that both materials exhibited comparable responses with small changes over time.
References
2 A. Tathe, M. Ghodke and A. Nikalje: A brief review: Biomaterials and their apllication, International Journal of Pharmacy and Pharmaceutical Sciences, Volume 2, (2010), 19–23.
3 A. Wadood: Brief Overview on Nitinol as Biomaterial, Advances in Materials Science and Engineering, 2016, (2016), e4173138, doi:10.1155/2016/4173138
4 K. Otsuka and C. M. Wayman: Shape Memory Materials, (1999), Cambridge University Press.
5 L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali and C. Tang: Stimulus-responsive shape memory materials: A review, Materials & Design, 33, (2012), 577–640, doi: 10.1016/j.matdes.2011.04.065.
6 X. Wang, B. Verlinden and J. Van Humbeeck: Effect of post-deformation annealing on the R-phase transformation temperatures in NiTi shape memory alloys, Intermetallics, 62, (2015), 43–49, doi: 10.1016/j.intermet.2015.03.006.
7 C. W. Chan, S. H. J. Chan, H. C. Man and P. Ji: 1-D constitutive model for evolution of stress-induced R-phase and localized Lüders-like stress-induced martensitic transformation of super-elastic NiTi wires, International Journal of Plasticity, 32–33, (2012), 85–105, doi: 10.1016/j.ijplas.2011.12.003.
8 E. Polatidis, N. Zotov, E. Bischoff and E. J. Mittemeijer: The effect of cyclic tensile loading on the stress-induced transformation mechanism in superelastic NiTi alloys: an in-situ X-ray diffraction study, Scripta Materialia, C, (2015), 59–62, doi: 10.1016/j.scriptamat.2014.12.013.
9 N. J. Kassebaum, E. Bernabé, M. Dahiya, B. Bhandari, C. J. L. Murray and W. Marcenes: Global Burden of Severe Tooth Loss: A Systematic Review and Meta-analysis, J Dent Res, 93, (2014), 20S-28S.
10 E. Leitão, M. A. Barbosa and K. De Groot: In vitro testing of surface-modified biomaterials, J Mater Sci Mater Med, 9, (1998), 543–548.
11 S. M. Castro, M. J. Ponces, J. D. Lopes, M. Vasconcelos and M. C. F. Pollmann: Orthodontic wires and its corrosion—The specific case of stainless steel and beta-titanium, Journal of Dental Sciences, 10, (2015), 1–7, doi: 10.1016/j.jds.2014.07.002.
12 I. Gurrappa, M. Kiran Kumar, Evaluation of corrosion resistance of plasma sprayed alumina, magnesia stabilized zirconia and yttria stabilized zirconia coatings on stainless steel for biomedical applications. Proceedings of Global 2000 Corrosion Meet, Mumbai, India, 1, (2000), 561–72.
13 H.-H. Huang, Y.-H. Chiu, T.-H. Lee, S.-C. Wu, H.-W. Yang, K.-H. Su and C.-C. Hsu: Ion release from NiTi orthodontic wires in artificial saliva with various acidities, Biomaterials, 24, (2003), 3585–3592, doi: 10.1016/s0142-9612(03)00188-1.
14 N. Schiff, B. Grosgogeat, M. Lissac and F. Dalard: Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys, Biomaterials, 23, (2002), 1995–2002, doi: 10.1016/s0142-9612(01)00328-3.
15 M. Fernández Lorenzo de Mele and M. C. Cortizo: Electrochemical behaviour of titanium in fluoride-containing saliva, Journal of Applied Electrochemistry, 30, (2000), 95–100, doi: 10.1023/A:1003891000220.
16 K. M. Hosny, R. A. Khallaf, H. Z. Asfour, W. Y. Rizg, N. A. Alhakamy, A. M. Sindi, H. M. Alkhalidi, W. A. Abualsunun, R. B. Bakhaidar, A. M. Almehmady, W. H. Abdulaal, M. A. Bakhrebah, M. S. Alsuabeyl, A. K Kammoun, A. F. Alghaith and S. Alshehri: Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota, Pharmaceutics, 13, (2021), 1008, doi: 10.3390/pharmaceutics13071008.
17 N. Dagli, R. Dagli, R. S. Mahmoud and K. Baroudi: Essential oils, their therapeutic properties, and implication in dentistry: A review, J Int Soc Prev Community Dent, 5, (2015), 335–340, doi: 10.4103/2231-0762.165933.
18 S. Chouhan, K. Sharma and S. Guleria: Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives, Medicines (Basel), 4, (2017), E58, doi: 10.3390/medicines4030058.
19 S. F. Nabavi, A. Di Lorenzo, M. Izadi, E. Sobarzo-Sánchez, M. Daglia and S. M. Nabavi: Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries, Nutrients, 7, (2015), 7729–7748, doi: 10.3390/nu7095359.
20 N. Goel, H. Rohilla, G. Singh and P. Punia: Antifungal Activity of Cinnamon Oil and Olive Oil against Candida Spp. Isolated from Blood Stream Infections, J Clin Diagn Res, 10, (2016), DC09-11, doi: 10.7860/JCDR/2016/19958.8339.
21 B. Alizadeh Behbahani, F. Falah, F. Lavi Arab, M. Vasiee and F. Tabatabaee Yazdi: Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil, Evidence-Based Complementary and Alternative Medicine, 2020, (2020), e5190603.
22 D. Ma, C. Mason and S. S. Ghoreishizadeh: in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), (2017), pp. 1–4, doi: 10.1155/2020/5190603.
23 P. Tseng, B. Napier, L. Garbarini, D. L. Kaplan and F. G. Omenetto: Functional, RF-Trilayer Sensors for Tooth-Mounted, Wireless Monitoring of the Oral Cavity and Food Consumption, Adv Mater, 30, (2018), e1703257, doi: 10.1002/adma.201703257.
24 T. Arakawa, Y. Kuroki, H. Nitta, P. Chouhan, K. Toma, S.-I. Sawada, S. Takeuchi, T. Sekita, K. Akiyoshi, S. Minakuchi and K. Mitsubayashi: Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor, Biosens Bioelectron, 84, (2016), 106–111, doi: 10.1016/j.bios.2015.12.014.
25 G. E. Simmers Jr, H. A. Sodano, G. Park and D. J. Inman: in Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, SPIE, vol. 5767, (2005), pp. 328–339.
26 M. Mirjalili, M. Momeni, N. Ebrahimi and M. H. Moayed: Comparative study on corrosion behaviour of Nitinol and stainless steel orthodontic wires in simulated saliva solution in presence of fluoride ions, Mater Sci Eng C Mater Biol Appl, 33, (2013), 2084–2093, doi: 10.1016/j.msec.2013.01.026.
27 O. Pazarci, U. Tutar and S. Kilinc: Investigation of the Antibiofilm Effects of Mentha longifolia Essential Oil on Titanium and Stainless Steel Orthopedic Implant Surfaces, Eurasian J Med, 51, (2019), 128–132, doi: 10.5152/eurasianjmed.2019.18432.
28 N. Fatene, S. Mansouri, B. Elkhalfi, M. Berrada, K. Mounaji and A. Soukri: Assessment of the electrochemical behaviour of Nickel-Titanium-based orthodontic wires: Effect of some natural corrosion inhibitors in comparison with fluoride, J Clin Exp Dent, 11, (2019), e414–e420, doi: 10.4317/jced.55601.
29 M. Cazzola, S. Ferraris, G. Banche, G. Gautier Di Confiengo, F. Geobaldo, C. Novara and S. Spriano: Innovative Coatings Based on Peppermint Essential Oil on Titanium and Steel Substrates: Chemical and Mechanical Protection Ability, Materials, 13, (2020), 516, doi: 10.3390/ma13030516.
30 B. A. Silva-Espinoza, J. J. Palomares-Navarro, M. R. Tapia-Rodriguez, M. R. Cruz-Valenzuela, G. A. González-Aguilar, E. Silva-Campa, M. Pedroza-Montero, M. Almeida-Lopes, R. Miranda and J. F. Ayala-Zavala: Combination of ultraviolet light-C and clove essential oil to inactivate Salmonella Typhimurium biofilms on stainless steel, Journal of Food Safety, 40, (2020), e12788, doi: 10.1111/jfs.12788.
31 L. S. M. Ooi, Y. Li, S.-L. Kam, H. Wang, E. Y. L. Wong and V. E. C. Ooi: Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume, Am J Chin Med, 34, (2006), 511–522, doi: 10.1142/S0192415X06004041.
32 L. Friedli, P. Nalabothu, C. Bosch, C. Verna, M. Steineck and M. Dalstra: Influence of different storage temperatures on the mechanical properties of NiTi, Cu-NiTi and SS orthodontic archwires: An in vitro study, Int Orthod, 18, (2020), 561–568, doi: 10.1016/j.ortho.2020.05.009.
33 D. Aripin, E. Julaeha, M. Dardjan and A. Cahyanto: Chemical composition of Citrus spp. and oral antimicrobial effect of Citrus spp. peels essential oils against Streptococcus mutans, Padjadjaran Journal of Dentistry, , DOI:10.24198/pjd.vol27no1.26751, doi: 10.24198/pjd.vol27no1.26751.