• Sampath Boopathi Department of Mechanical Engineering, Muthayammal Engineering College, Namakkal, Tamil Nadu, India, 637 408
  • V. Hari Balaji Department of Mechanical Engineering, Narasu’s Sarathy Institute of Technology, Salem, Tamil Nadu, India, 636 305
  • M. Mageswari Department of Civil Engineering, Panimalar Engineering College, Chennai, Tamil Nadu, India, 600123
  • M. Mohammed Asif Department of Mechanical Engineering, Vignan’s Lara Institute of Technology and Science, Guntur, Andra Pradesh, India, 522213
Keywords: boran carbide, microstructure, tensile strength, wear characteristics


In this article, a boron carbide particle (B4C) reinforced AA2014 surface composite was first fabricated by friction-stir processing (FSP) to investigate the impact of the volume percentage of B4C, tool rotational speed and table speed on the tensile strength (TS) and wear rate (WR). The AA2014 composite is one of the important candidates for making defense and aerospace components due to its high strength and minimum weight. Taguchi orthogonal array was employed to design and predict the maximum tensile strength and minimum wear rate. The volume percentage of B4C is the most momentous parameter for both the tensile strength and wear rate. The optimum parameter settings for attaining the maximum tensile strength of 605 MPa and a minimum wear rate of 1.2 mm3/Nm are a B4C volume of 15 %, tool rotational speed of 900 min–1 and table speed of 60 mm/min. The optimum process-parameter settings were used to make a specimen for validating the estimated results. The microstructure and chemical composition of the surface composite of the optimum specimen were illustrated using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The surface profile and microscopic view of the worn-out surface composite were also examined using SEM images.


1. M. Sharifitabar, M. Kashefi, S. Khorshahian, Effect of friction stir processing pass sequence on properties of Mg--ZrSiO4--Al2O3 surface hybrid micro/nano-composites, Materials \& Design, 108 (2016) , 1–7
2. A. Kurt, I. Uygur, E. Cete, Surface modification of aluminium by friction stir processing, Journal of Materials Processing Technology, 211 (2011) 3, 313–317, doi:10.1016/j.jmatprotec.2010.09.020.
3. E. R. I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing, Wear, 268 (2010) 9–10, 1111–1121, doi:10.1016/j.wear.2010.01.005.
4. B. Zahmatkesh, M. H. Enayati, A novel approach for development of surface nanocomposite by friction stir processing, Materials Science and Engineering A, 527 (2010) 24–25, 6734–6740, doi:10.1016/j.msea.2010.07.024.
5. C. H. Jeon, Y. H. Jeong, J. J. Seo, H. N. Tien, S. T. Hong, Y. J. Yum, S. H. Hur, K. J. Lee, Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing, International Journal of Precision Engineering and Manufacturing, 15 (2014) 6, 1235–1239, doi:10.1007/s12541-014-0462-2
6. V. Sharma, Y. Gupta, B. V. M. Kumar, U. Prakash, Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite, Materials and Manufacturing Processes, 31 (2016) 10, 1384–1392, doi:10.1080/10426914.2015.1103869
7. S. Shahraki, S. Khorasani, R. Abdi Behnagh, Y. Fotouhi, H. Bisadi, Producing of AA5083/ZrO2 nanocomposite by friction stir processing (FSP), Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 44 (2013) 6, 1546–1553, doi:10.1007/s11663-013-9914-9.
8. A. Devaraju, A. Kumar, B. Kotiveerachari, Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing, Materials and Design, 45 (2013) , 576–585, doi:10.1016/j.matdes.2012.09.036
9. M. Narimani, B. Lotfi, Z. Sadeghian, Investigating the microstructure and mechanical properties of Al-TiB2 composite fabricated by Friction Stir Processing (FSP), Materials Science and Engineering A, 673 (2016) , 436–442, doi:10.1016/j.msea.2016.07.086
10. S. Rathee, S. Maheshwari, A. N. Siddiquee, M. Srivastava, Investigating Effects of Groove Dimensions on Microstructure and Mechanical Properties of AA6063/SiC Surface Composites Produced by Friction Stir Processing, Transactions of the Indian Institute of Metals, 70 (2017) 3, 809–816, doi:10.1007/s12666-017-1060-7
11. M. Bahrami, M. K. Besharati Givi, K. Dehghani, N. Parvin, On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique, Materials and Design, 53 (2014) , 519–527, doi:10.1016/j.matdes.2013.07.049
12. S. F. Kashani-Bozorg, K. Jazayeri, Formation of Al/B4C surface nano-composite layers on 7075 Al alloy employing friction stir processing, AIP Conference Proceedings, 1136 (2009) 2009, 715–719, doi:10.1063/1.3160241
13. D. K. Lim, T. Shibayanagi, A. P. Gerlich, Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing, Materials Science and Engineering A, 507 (2009) 1–2, 194–199, doi:10.1016/j.msea.2008.11.067
14. C. M. Rejil, I. Dinaharan, S. J. Vijay, N. Murugan, Microstructure and sliding wear behavior of AA6360/(TiC+B 4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate, Materials Science and Engineering A, 552 (2012) , 336–344, doi:10.1016/j.msea.2012.05.049
15. A. Shafiei-Zarghani, S. F. Kashani-Bozorg, A. Zarei-Hanzaki, Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Materials Science and Engineering A, 500 (2009) 1–2, 84–91, doi:10.1016/j.msea.2008.09.064
16. S. Boopathi, A. Thillaivanan, M. Pandian, R. Subbiah, P. Shanmugam, Friction stir processing of boron carbide reinforced aluminium surface (Al-B4C) composite: Mechanical characteristics analysis, Materials Today: Proceedings, (2021) doi:10.1016/j.matpr.2021.10.261
17. G. Hussain, R. Hashemi, H. Hashemi, K. A. Al-Ghamdi, An experimental study on multi-pass friction stir processing of Al/TiN composite: some microstructural, mechanical, and wear characteristics, International Journal of Advanced Manufacturing Technology, 84 (2016) 1–4, 533–546, doi:10.1007/s00170-015-7504-5
18. K. Elangovan, V. Balasubramanian, M. Valliappan, Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy, International Journal of Advanced Manufacturing Technology, 38 (2008) 3–4, 285–295, doi:10.1007/s00170-007-1100-2
How to Cite
Boopathi S, Hari BalajiV, Mageswari M, AsifMM. INFLUENCES OF BORON CARBIDE PARTICLES ON THE WEAR RATE AND TENSILE STRENGTH OF AA2014 SURFACE COMPOSITE FABRICATED BY FRICTION-STIR PROCESSING. MatTech [Internet]. 2022Jun.3 [cited 2024Feb.24];56(3):263–270. Available from: