• Tilen Balaško Faculty of natural sciences and engineering, University of Ljubljana,
  • Maja Vončina Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
  • Jaka Burja Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
  • Jožef Medved Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
Keywords: heat treatment, tool steel, oxidation, thermogravimetric analysis


The high-temperature oxidation behaviour of chromium-molybdenum-vanadium alloyed hot-work tool steel was investigated. High-temperature oxidation was investigated in two conditions: soft annealed, and quenched and tempered. The samples were oxidised in a chamber furnace and in an instrument for simultaneous thermal analysis, for 100 h in the temperature range between 400 °C and 700 °C. Metallographic analysis (optical and scanning electron microscopy) was performed to study the microstructural changes in the steel and the oxide layer. Oxidation kinetics were analysed by thermogravimetric analysis, and equations were derived from the results. The kinetics can be described by three mathematical functions, namely: exponential, parabolic and cubic. However, which function best describes the kinetics depends on the oxidation temperature and the thermal condition of the steel. Quenched and tempered samples were shown to oxidise less, resulting in a slower oxidation rate.


1 G. Roberts, G. Krauss, R. Kennedy, Tool Steels, 5th ed., ASM International, Materials park 1998, 364
2 R. A. Mesquita, Tool steels: properties and performance, 1st ed., CRC Press, Boca Raton 2016, 257
3 F. Qayyum, M. Shah, S. Manzoor, M. Abbas, Comparison of thermomechanical stresses produced in work rolls during hot and cold rolling of cartridge brass 1101, Mater. Sci. Technol., 31 (2015) 3, 317-324, doi:10.1179/1743284714Y.0000000523
4 A. Medvedeva, J. Bergström, S. Gunnarsson, J. Andersson, High-temperature properties and microstructural stability of hot-work tool steels, Mater. Sci. Eng. A, 523 (2009) 1-2, 39-46, doi:10.1016/j.msea.2009.06.010
5 R. Markežič, N. Mole, I. Naglič, R. Šturm, Time and temperature dependent softening of H11 hot-work tool steel and definition of an anisothermal tempering kinetic model, Mater. Today Commun., 22 (2020) 100744, 1-7, doi:10.1016/j.mtcomm.2019.100744
6 D. Caliskanoglu, I. Siller, R. Ebner, H. Leitner, W. Waldhauser, F. Jeglitsch, Thermal Fatigue and Softening Behavior of Hot Work Tool Steels, Proc. 6th Int. Tool. Conf., Karlstad 2002, 707-719
7 Q. Zhou, X. Wu, N. Shi, J. Li, N. Min, Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering, Mater. Sci. Eng. A, 528 (2011) 18, 5696-5700, doi:10.1016/j.msea.2011.04.024
8 Z. Zhang, D. Delagnes, G. Bernhart, Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements, Mater. Sci. Eng. A, 380 (2004) 1-2, 222-230, doi:10.1016/j.msea.2004.03.067
9 A. Jilg, T. Seifert, Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening, Mater. Sci. Eng. A, 721 (2018), 96-102, doi:10.1016/j.msea.2018.02.048
10 N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, C. Levaillant, Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel, Mater. Sci. Eng. A, 387–389 (2004), 171-175, doi:10.1016/j.msea.2004.02.073
11 S. D. Cramer, B. S. Covino Jr, ASM Handbook Volume 13B: Corrosion: Materials, ASM International, Materials park 2005, 704
12 T. J. A. Richardson, Shreir’s Corrosion, 1st ed., Elsevier Science, Amsterdam 2009, 4000
13 G. Y. Lai, High-Temperature Corrosion And Materials Applications, ASM International, Materials park 2007, 461
14 R. W. Revie, Uhlig’s Corrosion Handbook, 3rd ed., John Wiley & Sons, Inc, Hoboken (New Jersey) 2011, 1296
15 D. J. Young, High Temperature Oxidation and Corrosion of Metals, 1st ed., Elsevier Science, Amsterdam 2008, 592
16 B. N. Popov, Corrosion Engineering: Principles and Solved Problems, Elsevier, Amsterdam 2015, 792
17 P. Pedeferri, Corrosion Science and Engineering, Springer, Cham 2018, 720
18 R. Y. Chen, W. Y. D. Yeun, Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen, Oxid. Met., 59 (2003), 433-468, doi:10.1023/A:1023685905159
19 N. B. Pilling, R. E. Bedworth, Oxidation of metals at high temperatures, J. Inst. Met., 29 (1923), 529-539
20 D. Caplan, G. I. Sproule, R. J. Hussey, Comparison of the kinetics of high-temperature oxidation of Fe as influenced by metal purity and cold work, Corros. Sci., 10 (1970) 1, 9-17, doi:10.1016/S0010-938X(70)80093-2
21 W. E. Boggs, R. H. Kachik, The Oxidation of Iron‐Carbon Alloys at 500°C, J. Electrochem. Soc., 116 (1969) 4, 424-430, doi:10.1149/1.2411889
22 D. Caplan, M. Cohen, Effect of cold work on the oxidation of iron from 400-650 °C, Corros. Sci., 6 (1966) 7, 321-326, doi:10.1016/S0010-938X(66)80039-2
23 M. H. Davies, M. T. Simnad, C. E. Birchenall, On the Mechanism and Kinetics of the Scaling of Iron, Jom, 3 (1951), 889–896, doi:10.1007/BF03397397
24 M. H. S. Bidabadi, S. Chandra-ambhorn, A. Rehman, Y. Zheng, C. Zhang, H. Chen, Z.-G. Yang, Carbon depositions within the oxide scale and its effect on the oxidation behavior of low alloy steel in low (0.1 MPa), sub-(5 MPa) and supercritical (10 MPa) CO2 at 550°C, Corros. Sci., 177 (2020), 108950, doi:10.1016/j.corsci.2020.108950
25 X. Zhang, X. Jie, L. Zhang, S. Luo, Q. Zheng, Improving the high-temperature oxidation resistance of H13 steel by laser cladding with a WC/Co-Cr alloy coating, Anti-Corrosion Methods Mater., 63 (2016) 3, 171-176, doi:10.1108/ACMM-11-2015-1606
26 Y. Min, X. Wu, R. Wang, L. Li, L. Xu, Prediction and analysis on oxidation of H13 hot work steel, J. Iron Steel Res. Int., 13 (2006) 1, 44-49, doi:10.1016/S1006-706X(06)60025-3
27 T. Balaško, M. Vončina, J. Burja, B. Š. Batič, J. Medved, High-temperature oxidation behaviour of AISI H11 tool steel, Metals (Basel), 11 (2021) 5, 758, doi:10.3390/met11050758
28 Thermo-Calc Software, TCFE10: TCS Steel and Fe-alloys Database, Thermo-Calc AB, Stockholm 2019
29 Z. Ye, P. Wang, D. Li, Y. Li, M23C6 precipitates induced inhomogeneous distribution of silicon in the oxide formed on a high-silicon ferritic/martensitic steel, Scr. Mater., 97 (2015), 45-48, doi:10.1016/j.scriptamat.2014.10.028
30 Y. Gong, D. J. Young, Y. L. Chiu, H. Larsson, A. Shin, J. M. Pearson, M. P. Moody, R. C. Reed, On the breakaway oxidation of Fe9Cr1Mo steel in high pressure CO2, Acta Mater., 130 (2017), 361-374, doi:10.1016/j.actamat.2017.02.034
31 K. H. Jung, S. J. Kim, Role of M23C6 carbide on the corrosion characteristics of modified 9Cr-1Mo steel in N2-O2-CO2-SO2 atmosphere at 650 °C, Appl. Surf. Sci., 483 (2019), 417-424, doi:10.1016/j.apsusc.2019.03.272
32 S. Wu, Y. Fei, B. Guo, L. Jing, Corrosion of Cr23C6 coated Q235 steel in wet atmospheres containing Na2SO4 at 750°C, Corros. Sci., 100 (2015), 306-310, doi:10.1016/j.corsci.2015.08.008
33 Z. Li, G. Cao, F. Lin, C. Cui, H. Wang, Z. Liu, Phase transformation behavior of oxide scale on plain carbon steel containing 0.4 wt.% Cr during continuous cooling, ISIJ Int., 58 (2018) 12, 2338-2347, doi:10.2355/isijinternational.ISIJINT-2018-365
34 H. J. Grabke, M. Spiegel, A. Zahs, Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys, Mater. Res., 7 (2004) 1, 89-95, doi:10.1590/S1516-14392004000100013
35 K. Sachs, J. R. Brown, A theory of decarburization by scale, J. iron steel Inst., 190 (1958), 169-170
36 L. B. Susanto, D. J. Young, Effect of carbide volume fraction on the oxidation of austenitic Fe-Cr-C alloys, Mater. Corros., 57 (2006) 6, 467–475, doi:10.1002/maco.200503945
How to Cite