ANALYSIS OF A CRYOGENICALLY COOLED NEAR-DRY WEDM PROCESS USING DIFFERENT DIELECTRICS

  • K. Gunasekaran Department of Mechanical Engineering, Muthayammal Engineering College, Namakkal (Autonomous), India
  • Sampath Boopathi Department of Mechanical Engineering, Muthayammal Engineering College, Namakkal (Autonomous), India
  • M. Sureshkumar Department of Mechanical Engineering, Bannariamman Institute of Technology, Erode, India
Keywords: liquid nitrogen, Inconel-718 alloy, wire wear ratio, material removal rate

Abstract

In this research, a cryogenically cooled, near-dry, wire-cut, electrical discharge machining (CNDWEDM) investigation was performed using air, oxygen, and helium gases mixed with the minimum quantity of dielectric water as the working medium to cut Inconel-718 alloy with a molybdenum wire tool. All the experiments have been performed using the –150 °C temperature of the liquid-nitrogen-cooled wire electrode. The comparative analysis of the wire wear ratio (WWR), and the material removal rate (MRR) have been performed using an L27 orthogonal array. The air/gas pressure, mixing water-flow rate, spark current, and pulse duration are considered as influencing parameters on the cutting characteristics. It was observed from a comparative analysis that the WWR of oxygen-mist and helium-mist CNDWEDM processes are 30.39 % and 27.91 % higher than air-mist CNDWEDM, respectively. The MRR of the oxygen-mist and helium-mist CNDWEDM processes are 7.09 % and 3.60 % higher than the air-mist CNDWEDM, respectively. The contributions of the process parameters on the MRR and WWR for all three dielectric media have also been illustrated. It was observed from scanning electron microscope (SEM) images that the crater size in the wire tool of the oxygen-mist CNDWEDM is higher than the crater-size of the wire in the air-mist and helium-mist CNDWEDM.

References

1. S. Boopathi, An investigation on gas emission concentration and relative emission rate of the near-dry wire-cut electrical discharge machining process, Springer: Environmental Science and Pollution Research (2021) , 1–10, , springer nature.
2. N. Singh, K. Singh, Review on recent development in environmental-friendly EDM techniques, Advances in Manufacturing Science and Technology 39 (2015) 1, 17–37, doi:10.2478/amst-2015-0002.
3. K. Dhakar et al., An environment-friendly and sustainable machining method: near-dry EDM, Materials and Manufacturing Processes 34 (2019) 12, 1307–1315, , Taylor & Francisdoi:10.1080/10426914.2019.1643471.
4. J. Singh, R. K. Sharma, Green EDM Strategies to Minimize Environmental Impact and Improve Process Efficiency, Journal for Manufacturing Science and Production 16 (2017) 4doi:10.1515/jmsp-2016-0034.
5. V. S. Ganachari et al., A comparative performance study of dry and near dry EDM processes in machining of spring steel material, Materials Today: Proceedings 18 (2019) , 5247–5257, , Elsevier Ltd.doi:10.1016/j.matpr.2019.07.525.
6. S. Sundriyal, Vipin, R. S. Walia, Study on the influence of metallic powder in near-dry electric discharge machining, Strojniski Vestnik/Journal of Mechanical Engineering 66 (2020) 4, 243–253, doi:10.5545/sv-jme.2019.6475.
7. K. Dhakar, A. Dvivedi, Parametric Evaluation on Near-Dry Electric Discharge Machining, Materials and Manufacturing Processes 31 (2016) 4, 413–421, doi:10.1080/10426914.2015.1037905.
8. K. Dhakar, A. Dvivedi, Experimental Investigation on Near-dry EDM using Glycerin-Air Mixture as Dielectric Medium, Materials Today: Proceedings 4 (2017) 4, 5344–5350, , Elsevier Ltddoi:10.1016/j.matpr.2017.05.045.
9. M. P. Jahan, A. P. Malshe, K. P. Rajurkar, Experimental investigation and characterization of nano-scale dry electro-machining, Journal of Manufacturing Processes 14 (2012) 4, 443–451, , The Society of Manufacturing Engineersdoi:10.1016/j.jmapro.2012.08.004.
10. V. Srivastava, P. M. Pandey, Performance evaluation of electrical discharge machining (EDM) process using cryogenically cooled electrode, Materials and Manufacturing Processes 27 (2012) 6, 683–688, doi:10.1080/10426914.2011.602790.
11. R. Singh, B. Singh, Comparison of cryo treatment effect on machining characteristics of titanium in electric discharge machining, International Journal of Automotive and Mechanical Engineering 3 (2011) 1, 239–248, doi:10.15282/ijame.3.2011.1.0020.
12. S. Abdulkareem, A. A. Khan, M. Konneh, Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining, International Journal of Advanced Manufacturing Technology 45 (2009) 11–12, 1146–1151, doi:10.1007/s00170-009-2060-5.
13. L. Liqing, S. Yingjie, Study of dry EDM with oxygen-mixed and cryogenic cooling approaches, Procedia CIRP 6 (2013) , 344–350, , Elsevier B.V.doi:10.1016/j.procir.2013.03.055.
14. S. Myilsamy, B. Sampath, Experimental comparison of near-dry and cryogenically cooled near-dry machining in wire-cut electrical discharge machining processes, Surface Topography: Metrology and Properties 9 (2021) 3, in press, doi:10.1088/2051-672X/ac15e0.
15. B. Sampath, S. Myilsamy, Experimental Investigation of a Cryogenically Cooled Oxygen-mist Near-dry Wire-cut Electrical Discharge Machining Process, Strojniški vestnik – Journal of Mechanical Engineering 67 (2021) 6, 322–330, doi:10.5545/sv-jme.2021.7161.
16. S. Boopathi, An extensive review on sustainable developments of dry and near-dry electrical discharge machining processes, ASME: Journal of Manufacturing Science and Engineering 144 (2022) 5, 1–37, , American Society of Mechanical Engineers Digital Collection.
17. S. Myilsamy, S. Boopathi, D. Yuvaraj, A study on cryogenically treated molybdenum wire electrode, Materials Today: Proceedings 45 (2021) 9, 8130–8135, , Elsevierdoi:10.1016/j.matpr.2021.02.049.
18. S. Boopathi, K. Sivakumar, Experimental comparative study of near-dry wire-cut electrical discharge machining (WEDM), European Journal of Scientific Research 75 (2012) 4, 472–481, .
19. S. Boopathi, S. Myilsamy, Material removal rate and surface roughness study on Near-dry wire electrical discharge Machining process, Materials Today: Proceedings 45 (2021) 9, 8149–8156, doi:10.1016/j.matpr.2021.02.267.
20. S. Boopathi, K. Sivakumar, Experimental investigation and parameter optimization of near-dry wire-cut electrical discharge machining using multi-objective evolutionary algorithm, International Journal of Advanced Manufacturing Technology 67 (2013) 9–12, 2639–2655, doi:10.1007/s00170-012-4680-4.
21. S. Boopathi, K. Sivakumar, Optimal parameter prediction of oxygen-mist near-dry Wire-cut EDM, International Journal of Manufacturing Technology and Management 30 (2016) 3–4, 164–178, , Inderscience Publishers (IEL)doi:10.1504/IJMTM.2016.077812.
22. M. T. Mohammed, Investigate WEDM Process Parameters on Wire Wear Ratio, Material Removal Rate and Surface Roughness of Steel 1012 AISI, Engineering and Technology Journal 36 (2018) 3doi:10.30684/etj.36.3a.3.
23. J. B. Valaki, P. P. Rathod, Assessment of operational feasibility of waste vegetable oil based bio-dielectric fluid for sustainable electric discharge machining (EDM), International Journal of Advanced Manufacturing Technology 87 (2016) 5–8, 1509–1518, doi:10.1007/s00170-015-7169-0.
24. S. Boopathi, K. Sivakumar, Study of water assisted dry wire-cut electrical discharge machining, Indian Journal of Engineering and Materials Sciences 21 (2014) 1, 75–82, doi:http://nopr.niscair.res.in/handle/123456789/27453.
25. N. Hardik et al., A Literature Review on Dry Wire Electrical Discharge Machining, 788–793, .
26. V. K. Yadav, P. Kumar, A. Dvivedi, Performance enhancement of rotary tool near-dry EDM of HSS by supplying oxygen gas in the dielectric medium, Materials and Manufacturing Processes 34 (2019) 16, 1832–1846, , Taylor & Francisdoi:10.1080/10426914.2019.1675889.
27. M. Dahmardeh, A. Nojeh, K. Takahata, Possible mechanism in dry micro-electro-discharge machining of carbon-nanotube forests: A study of the effect of oxygen, Journal of Applied Physics 109 (2011) 9doi:10.1063/1.3587158.
28. A. Pradesh, G. S. Brar, Dry Electric Discharge Machining - a Green Environment Friendly Edm, proceedings of the National conference on Advances in MEchanical Engineering (2012) October 2012, 1–4, .
29. P. Govindan, R. Agrawal, S. S. Joshi, Experimental investigation on dry EDM using helium gas dielectric, International Journal of Manufacturing Technology and Management 24 (2011) 1–4, 40–56, doi:10.1504/IJMTM.2011.046759.
30. E. Uhlmann, T. M. Schimmelpfennig, Investigation of dry-EDM micro drilling for high performance ceramics, Proceedings of the 13th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2013 2 (2013) May, 298–301, .
31. J. Tao, A. J. Shih, Dry and near-dry electrical discharge milling processes, Proceedings of the 15th International Symposium on Electromachining, ISEM 2007 (2007) , 275–280, .
32. K. Singh, A. Kumar Agarwal, R. Yadav, Effect of Dielectric fluids used on EDM Performance: A Review, International Journal of Emerging Technologies in Engineering Research (IJETER) 5 (2017) 10, 10–16, .
33. R. K. Fard, R. A. Afza, R. Teimouri, Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of Al-SiC metal matrix composite, Journal of Manufacturing Processes 15 (2013) 4, 483–494, , The Society of Manufacturing Engineersdoi:10.1016/j.jmapro.2013.09.002.
1. S. Boopathi, An investigation on gas emission concentration and relative emission rate of the near-dry wire-cut electrical discharge machining process, Springer: Environmental Science and Pollution Research (2021) , 1–10, , springer nature.
2. N. Singh, K. Singh, Review on recent development in environmental-friendly EDM techniques, Advances in Manufacturing Science and Technology 39 (2015) 1, 17–37, doi:10.2478/amst-2015-0002.
3. K. Dhakar et al., An environment-friendly and sustainable machining method: near-dry EDM, Materials and Manufacturing Processes 34 (2019) 12, 1307–1315, , Taylor & Francisdoi:10.1080/10426914.2019.1643471.
4. J. Singh, R. K. Sharma, Green EDM Strategies to Minimize Environmental Impact and Improve Process Efficiency, Journal for Manufacturing Science and Production 16 (2017) 4doi:10.1515/jmsp-2016-0034.
5. V. S. Ganachari et al., A comparative performance study of dry and near dry EDM processes in machining of spring steel material, Materials Today: Proceedings 18 (2019) , 5247–5257, , Elsevier Ltd.doi:10.1016/j.matpr.2019.07.525.
6. S. Sundriyal, Vipin, R. S. Walia, Study on the influence of metallic powder in near-dry electric discharge machining, Strojniski Vestnik/Journal of Mechanical Engineering 66 (2020) 4, 243–253, doi:10.5545/sv-jme.2019.6475.
7. K. Dhakar, A. Dvivedi, Parametric Evaluation on Near-Dry Electric Discharge Machining, Materials and Manufacturing Processes 31 (2016) 4, 413–421, doi:10.1080/10426914.2015.1037905.
8. K. Dhakar, A. Dvivedi, Experimental Investigation on Near-dry EDM using Glycerin-Air Mixture as Dielectric Medium, Materials Today: Proceedings 4 (2017) 4, 5344–5350, , Elsevier Ltddoi:10.1016/j.matpr.2017.05.045.
9. M. P. Jahan, A. P. Malshe, K. P. Rajurkar, Experimental investigation and characterization of nano-scale dry electro-machining, Journal of Manufacturing Processes 14 (2012) 4, 443–451, , The Society of Manufacturing Engineersdoi:10.1016/j.jmapro.2012.08.004.
10. V. Srivastava, P. M. Pandey, Performance evaluation of electrical discharge machining (EDM) process using cryogenically cooled electrode, Materials and Manufacturing Processes 27 (2012) 6, 683–688, doi:10.1080/10426914.2011.602790.
11. R. Singh, B. Singh, Comparison of cryo treatment effect on machining characteristics of titanium in electric discharge machining, International Journal of Automotive and Mechanical Engineering 3 (2011) 1, 239–248, doi:10.15282/ijame.3.2011.1.0020.
12. S. Abdulkareem, A. A. Khan, M. Konneh, Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining, International Journal of Advanced Manufacturing Technology 45 (2009) 11–12, 1146–1151, doi:10.1007/s00170-009-2060-5.
13. L. Liqing, S. Yingjie, Study of dry EDM with oxygen-mixed and cryogenic cooling approaches, Procedia CIRP 6 (2013) , 344–350, , Elsevier B.V.doi:10.1016/j.procir.2013.03.055.
14. S. Myilsamy, B. Sampath, Experimental comparison of near-dry and cryogenically cooled near-dry machining in wire-cut electrical discharge machining processes, Surface Topography: Metrology and Properties 9 (2021) 3, in press, doi:10.1088/2051-672X/ac15e0.
15. B. Sampath, S. Myilsamy, Experimental Investigation of a Cryogenically Cooled Oxygen-mist Near-dry Wire-cut Electrical Discharge Machining Process, Strojniški vestnik – Journal of Mechanical Engineering 67 (2021) 6, 322–330, doi:10.5545/sv-jme.2021.7161.
16. S. Boopathi, An extensive review on sustainable developments of dry and near-dry electrical discharge machining processes, ASME: Journal of Manufacturing Science and Engineering 144 (2022) 5, 1–37, , American Society of Mechanical Engineers Digital Collection.
17. S. Myilsamy, S. Boopathi, D. Yuvaraj, A study on cryogenically treated molybdenum wire electrode, Materials Today: Proceedings 45 (2021) 9, 8130–8135, , Elsevierdoi:10.1016/j.matpr.2021.02.049.
18. S. Boopathi, K. Sivakumar, Experimental comparative study of near-dry wire-cut electrical discharge machining (WEDM), European Journal of Scientific Research 75 (2012) 4, 472–481, .
19. S. Boopathi, S. Myilsamy, Material removal rate and surface roughness study on Near-dry wire electrical discharge Machining process, Materials Today: Proceedings 45 (2021) 9, 8149–8156, doi:10.1016/j.matpr.2021.02.267.
20. S. Boopathi, K. Sivakumar, Experimental investigation and parameter optimization of near-dry wire-cut electrical discharge machining using multi-objective evolutionary algorithm, International Journal of Advanced Manufacturing Technology 67 (2013) 9–12, 2639–2655, doi:10.1007/s00170-012-4680-4.
21. S. Boopathi, K. Sivakumar, Optimal parameter prediction of oxygen-mist near-dry Wire-cut EDM, International Journal of Manufacturing Technology and Management 30 (2016) 3–4, 164–178, , Inderscience Publishers (IEL)doi:10.1504/IJMTM.2016.077812.
22. M. T. Mohammed, Investigate WEDM Process Parameters on Wire Wear Ratio, Material Removal Rate and Surface Roughness of Steel 1012 AISI, Engineering and Technology Journal 36 (2018) 3doi:10.30684/etj.36.3a.3.
23. J. B. Valaki, P. P. Rathod, Assessment of operational feasibility of waste vegetable oil based bio-dielectric fluid for sustainable electric discharge machining (EDM), International Journal of Advanced Manufacturing Technology 87 (2016) 5–8, 1509–1518, doi:10.1007/s00170-015-7169-0.
24. S. Boopathi, K. Sivakumar, Study of water assisted dry wire-cut electrical discharge machining, Indian Journal of Engineering and Materials Sciences 21 (2014) 1, 75–82, doi:http://nopr.niscair.res.in/handle/123456789/27453.
25. N. Hardik et al., A Literature Review on Dry Wire Electrical Discharge Machining, 788–793, .
26. V. K. Yadav, P. Kumar, A. Dvivedi, Performance enhancement of rotary tool near-dry EDM of HSS by supplying oxygen gas in the dielectric medium, Materials and Manufacturing Processes 34 (2019) 16, 1832–1846, , Taylor & Francisdoi:10.1080/10426914.2019.1675889.
27. M. Dahmardeh, A. Nojeh, K. Takahata, Possible mechanism in dry micro-electro-discharge machining of carbon-nanotube forests: A study of the effect of oxygen, Journal of Applied Physics 109 (2011) 9doi:10.1063/1.3587158.
28. A. Pradesh, G. S. Brar, Dry Electric Discharge Machining - a Green Environment Friendly Edm, proceedings of the National conference on Advances in MEchanical Engineering (2012) October 2012, 1–4, .
29. P. Govindan, R. Agrawal, S. S. Joshi, Experimental investigation on dry EDM using helium gas dielectric, International Journal of Manufacturing Technology and Management 24 (2011) 1–4, 40–56, doi:10.1504/IJMTM.2011.046759.
30. E. Uhlmann, T. M. Schimmelpfennig, Investigation of dry-EDM micro drilling for high performance ceramics, Proceedings of the 13th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2013 2 (2013) May, 298–301, .
31. J. Tao, A. J. Shih, Dry and near-dry electrical discharge milling processes, Proceedings of the 15th International Symposium on Electromachining, ISEM 2007 (2007) , 275–280, .
32. K. Singh, A. Kumar Agarwal, R. Yadav, Effect of Dielectric fluids used on EDM Performance: A Review, International Journal of Emerging Technologies in Engineering Research (IJETER) 5 (2017) 10, 10–16, .
33. R. K. Fard, R. A. Afza, R. Teimouri, Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of Al-SiC metal matrix composite, Journal of Manufacturing Processes 15 (2013) 4, 483–494, , The Society of Manufacturing Engineersdoi:10.1016/j.jmapro.2013.09.002.
Published
2022-04-06
How to Cite
1.
Gunasekaran K, Boopathi S, Sureshkumar M. ANALYSIS OF A CRYOGENICALLY COOLED NEAR-DRY WEDM PROCESS USING DIFFERENT DIELECTRICS. MatTech [Internet]. 2022Apr.6 [cited 2022Jun.27];56(2):179–186. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/397