TEMPERATURE-INDUCED THICKNESS REDUCTION OF MICROMECHANICAL PROPERTIES OF Sn-0.7Cu SOLDER ALLOY
Abstract
Solders are used in electronic packaging for metallurgical interconnections. Thermomechanical methods are used to modify the properties of a material. Cubic Sn-0.7Cu solder alloy was subjected to heat treatment at 30–150 °C for 20 min, followed by 80 % compression. The control samples used in this study were only subjected to heat treatment. This study used the nanoindentation approach to investigate the reductions in the modulus and hardness of the lead-free Sn-0.7Cu solder alloy after thermomechanical treatment. Samples with 80 % compression showed slight changes in the reduced modulus (approximately 24 %) and hardness (approximately 14 %) after thermomechanical treatment. In contrast, the solder alloy that underwent heat treatment alone (the control sample) showed shifts in the hardness and reduced modulus of approximately 54 % and 66 %, respectively. The production of new recrystallized grains resulted in smaller changes in the micromechanical properties. These findings demonstrated that thermomechanical treatment can both modify and stabilize the properties of the Sn-0.7Cu solder alloy, such as micromechanical properties.
References
[2] Z. Nasiri, S. Ghaemifar, M. Naghizadeh, H. Mirzadeh, Thermal Mechanisms of Grain Refinement in Steels: A Review, Met. Mater. Int. 27 (2021) 2078–2094. https://doi.org/10.1007/s12540-020-00700-1.
[3] J. Hui, Z. Feng, W. Fan, X. Yuan, The influence of power spinning and annealing temperature on microstructures and properties of Cu-Sn alloy, Mater. Charact. 144 (2018) 611–620. https://doi.org/10.1016/j.matchar.2018.08.015.
[4] H. Li, M. Gong, T. Li, Z. Wang, G. Wang, Effects of hot-core heavy reduction rolling during continuous casting on microstructures and mechanical properties of hot-rolled plates, J. Mater. Process. Technol. 283 (2020) 116708. https://doi.org/10.1016/j.jmatprotec.2020.116708.
[5] M. Aamir, R. Muhammad, M. Tolouei-Rad, K. Giasin, V. V. Silberschmidt, A review: microstructure and properties of tin-silver-copper lead-free solder series for the applications of electronics, Solder. Surf. Mt. Technol. 32 (2019) 115–126. https://doi.org/10.1108/SSMT-11-2018-0046.
[6] M. Zhao, L. Zhang, Z.-Q. Liu, M.-Y. Xiong, L. Sun, Structure and properties of Sn-Cu lead-free solders in electronics packaging, Sci. Technol. Adv. Mater. 20 (2019) 421–444. https://doi.org/10.1080/14686996.2019.1591168.
[7] P. Zhang, S. Xue, J. Wang, New challenges of miniaturization of electronic devices: Electromigration and thermomigration in lead-free solder joints, Mater. Des. 192 (2020) 108726. https://doi.org/10.1016/j.matdes.2020.108726.
[8] B. Ali, M.F.M. Sabri, I. Jauhari, N.L. Sukiman, Impact toughness, hardness and shear strength of Fe and Bi added Sn-1Ag-0.5Cu lead-free solders, Microelectron. Reliab. 63 (2016) 224–230. https://doi.org/10.1016/j.microrel.2016.05.004.
[9] D. Giuranno, S. Delsante, G. Borzone, R. Novakovic, Effects of Sb addition on the properties of Sn-Ag-Cu/(Cu, Ni) solder systems, J. Alloys Compd. 689 (2016) 918–930. https://doi.org/10.1016/j.jallcom.2016.08.035.
[10] I. Abdullah, M.N. Zulkifli, A. Jalar, R. Ismail, Deformation behavior relationship between tensile and nanoindentation tests of SAC305 lead-free solder wire, Solder. Surf. Mt. Technol. 30 (2018) 194–202. https://doi.org/10.1108/SSMT-07-2017-0020.
[11] G. Xiao, X. Yang, G. Yuan, Z. Li, X. Shu, Mechanical properties of intermetallic compounds at the Sn–3.0Ag–0.5Cu/Cu joint interface using nanoindentation, Mater. Des. 88 (2015) 520–527. https://doi.org/10.1016/j.matdes.2015.09.059.
[12] N. Ismail, A. Jalar, M.A. Bakar, R. Ismail, Effect of carbon nanotube addition on the growth of intermetallic layer of Sn-Ag-Cu solder system under thermal aging, Sains Malaysiana. 47 (2018) 1585–1590. https://doi.org/10.17576/jsm-2018-4707-29.
[13] I. Abdullah, M.N. Zulkifli, A. Jalar, R. Ismail, M.A. Ambak, Relationship of Mechanical and Micromechanical Properties with Microstructural Evolution of Sn-3.0Ag-0.5Cu (SAC305) Solder Wire Under Varied Tensile Strain Rates and Temperatures, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-06985-2.
[14] D.M. Filizzolab, T.S. Santosa, A.G. Mirandaa, J.C.M. Costaa, N.R. Nascimentoc, M.D. Santosb, R.H. Belloa, G.G. Pinob, J.C.M. Netoa, Annealing effect on the microstructure and mechanical properties of AA 5182 aluminum alloy, Mater. Res. 24 (2021). https://doi.org/10.1590/1980-5373-MR-2020-0545.
[15] Z. Tang, F. Jiang:, M. Long, J. Jiang, H. Liu, M. Tong, Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al-Mg-Mn-Sc-Zr alloy, Appl. Surf. Sci. 514 (2020). https://doi.org/10.1016/j.apsusc.2020.146081.
[16] M. Abu Bakar, A. Jalar, W.Y. Wan Yusoff, N.S. Safee, A. Ismail, N. Ismail, E.M. Salleh, N.S. Ibrahim, Effect of Shock Wave on Micromechanical Properties of SAC 0307/ENiG Solder Joint using Nanoindentation Approach, Sains Malaysiana. 48 (2019) 1273–1279. https://doi.org/10.17576/jsm-2019-4806-15.
[17] G. Zhou, J. Guo, J. Zhao, Q. Tang, Z. Hu, Nanoindentation Properties of 18CrNiMo7-6 Steel after Carburizing and Quenching Determined by Continuous Stiffness Measurement Method, Metals (Basel). 10 (2020) 125. https://doi.org/10.3390/met10010125.
[18] Y. Sun, P. Chen, L. Liu, M. Yan, X. Wu, C. Yu, Z. Liu, Local mechanical properties of Al CoCrCuFeNi high entropy alloy characterized using nanoindentation, Intermetallics. 93 (2018) 85–88. https://doi.org/10.1016/j.intermet.2017.11.010.
[19] J. Fan, Z. Liu, H. Zhai, X. Wang, Y. Wang, Y. Li, X. Zhou, S. Wu, J. Liu, Effect of Co content on the microstructure, spreadability, conductivity and corrosion resistance of Sn-0.7Cu alloy, Microelectron. Reliab. 107 (2020) 113615. https://doi.org/10.1016/j.microrel.2020.113615.
[20] G. Liu, S. Ji, Microstructure, dynamic restoration and recrystallization texture of Sn-Cu after rolling at room temperature, Mater. Charact. 150 (2019) 174–183. https://doi.org/10.1016/j.matchar.2019.02.032.
[21] X. Long, J. Xu, S. Wang, W. Tang, C. Chang, Understanding the impact response of lead-free solder at high strain rates, Int. J. Mech. Sci. 172 (2020) 105416. https://doi.org/10.1016/j.ijmecsci.2020.105416.