MODIFIED DESIGN STRUCTURE OF A METAMATERIAL MICROSTRIP PATCH ARRAY ANTENNA FOR RF ENERGY OPTIMIZATION
Abstract
We propose a modified design of a microstrip patch array antenna for RF energy optimization over 2.45 GHz WLAN communication applications. Initially, a one-patch and a two-patch array antennas were developed and considered as the base for the construction of a four-patch array antenna in the GSM 1800 frequency range. The energy usage by the WLAN application model includes a radiofrequency WLAN supply, a wireless connection, the proposed array antenna, impedance network matching, a voltage rectifier and a storage circuit that achieves higher efficiency. The proposed antenna design is utilized to examine the distance effect on the received RF power and it achieves the maximum efficiency of 47 % at 2.45 GHz at a 1-meter distance from the source. Improved gain is acquired at the expense of a greater array-antenna size with a -26 dB return loss, proving that it is much more efficient than other structures. Moreover, when experimentally analysed with HFSS, it delivers sufficient energy over WLAN applications.
References
2. V. Niranjan, A. Saxena, and K. Srivastava, “CPW-fed Slot Patch Antenna for 5.2/5.8GHz WLAN Application”, PIERS Proceedings, Kuala Lumpur, Malaysia, March 27–30, 2012.
3. G. Ahmad, M. Babar, M. Irfan, Majid Ashraf, Tariqullah Jan, and S. Shah, “Bandwidth Enhancement of Patch Antenna through Various Techniques for Ku-Band Application”, Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences, Physical and Computational Sciences, 55 (1), pp. 109–116, 2018.
4. S. Nyunt, “Implementation of Microstrip Patch Antenna for Wi-Fi Applications”, American Journal of Computer Science and Technology, 1(3), pp. 63-73, 2018.
5. M. Arrawatia, M. S. Baghini, and G. Kumar, “Differential microstrip antenna for RF energy harvesting,” IEEE Trans. Antennas Propag., vol. 63, no. 4, pp. 1581–1588, Apr. 2015.
6. A. Georgiadis, G. V. Andia, and A. Collado, “Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 444–446, 2010.
7. M. Wagih, A. S. Weddell, and S. Beeby, “Millimeter-wave power harvesting: A review,” IEEE Open J. Antennas Propag., vol. 1, pp. 560–578, 2020.
8. A. D. Boursianis et al., “Smart irrigation system for precision agriculture—The Arethou5A IoT platform,” IEEE Sensors J., early access, doi: 10.1109/JSEN.2020.3033526
9. A. D. Boursianis, M. S. Papadopoulou, S. Nikolaidis, and S. K. Goudos, “Dual-band single-layered modified e-shaped patch antenna for RF energy harvesting systems,” in Proc. Eur. Conf. Circuit Theory Design (ECCTD), 2020, pp. 1–4.
10. M. Wagih, A. S. Weddell, and S. Beeby, “Rectennas for radiofrequency energy harvesting and wireless power transfer: A review of antenna design [antenna applications corner],” IEEE Antennas Propag. Mag., vol. 62, no. 5, pp. 95–107, Oct. 2020.
11. M. Cansiz, D. Altinel, and G. K. Kurt, “Efficiency in RF energy harvesting systems: A comprehensive review,” Energy, vol. 174, pp. 292–309, May 2019.
12. B. Karthik, S.Vijayaragavan and M.Sriram, “Microstrip Patch Antenna for Wireless LAN”, International Journal of Pure and Applied Mathematics, Vol. 118, No. 18, pp. 25-33, 2018.
13. P. Pandey, N. Agrawal, and A. Agrawal, “A Survey on Performance Enhancement Techniques for Microstrip Patch Antenna”, International Journal of Research and Analytical Reviews (IJRAR), January 2019, Vol. 06, Issue 1, pp. 669-676, 2018.
14. Ghaloua, A., Zbitou, J., El Abdellaoui, L., Errkik, A., Tajmouati, A., &Latrach, M., “A miniature circular patch antenna using defected ground structure for ISM band applications,” In Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems (pp. 1-5), 2017.
15. Jia, L. L., Jian, X. C., Quan, X., Jian, P. W., Wei, S., and Liang, J. X., “Compact microstrip low pass filter based on defected ground structure and compensated microstrip line,” IEEE Explorer, 0-7803-8846- 1/05/ IEEE, pp: 1-4, 2005.
16. Gautam, A. K., Kumar, L., Kanaujia, B. K., &Rambabu, K., “Design of compact F-shaped slot tripleband antenna for WLAN/WiMAX applications,” IEEE Transactions on Antennas and Propagation, 64(3), 1101-1105, 2015.
17. Bharadwaj, R., “Design of micro-strip patch antenna array using DGS for ISM band applications,” Glob J Res Rev, 4, 1-4, 2017.
18. S. Agrawal, M. S. Parihar, and P. N. Kondekar, “A quad-band antenna for multi-band radio frequency energy harvesting circuit,” Int. J. Electron. Commun., vol. 85, pp. 99–107, Feb. 2018.
19. M. F. Shaker, H. A. Ghali, D. M. N. Elsheakh, and H. A. E. Elsadek, “Multiband coplanar monopole antenna for energy harvesting,” in Proc. IEEE Int. Symp. Radio Freq. Integr. Technol. (RFIT), 2018, pp. 1–3.
20. N. A. Eltresy, D. M. Elsheakh, and E. A. Abdallah, “Multi-bandwidth CPW-FED open end square loop monopole antenna for energy harvesting,” in Proc. Int. Appl. Comput. Electromagn. Soc. Symp. (ACES), 2018, pp. 1–2.
21. O. M. A. Dardeer, H. Elsadek, and E. A. Abdallah, “CPW-FED multi-band antenna for various wireless communications applications,” in Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 2018, pp. 785–786.
22. N. Nguyen et al., “Multiband antenna for RF energy harvesting,” in Proc. Int. Symp. Antennas Propag. (ISAP), 2018, pp. 1–2.
23. S. Shen, Y. Zhang, C. Chiu, and R. Murch, “An ambient RF energy harvesting system where the number of antenna ports is dependent on frequency,” IEEE Trans. Microwaves Theory Techn., vol. 67, no. 9, pp. 3821–3832, Sep. 2019.
24. A. Arora, S. Singh, Vandana, M. Varshney, M. K. Pandey, and S. Pandey, “A novel lotus shaped multiband patch antenna with improved performance,” in Proc. Photon. Electromagn. Res. Symp. Spring (PIERS-Spring), 2019, pp. 3571–3577.
25. A. G. Koutinos et al., “Modified easy to fabricate e-Shaped compact patch antenna with wideband and multiband functionality,” IET Microwaves Antennas Propag., vol. 12, no. 3, pp. 326–331, 2018.
26. N. Singh, B. K. Kanaujia, M. T. Beg, Mainuddin, T. Khan, and S. Kumar, “A dual polarized multiband rectenna for RF energy harvesting,” Int. J. Electron. Commun., vol. 93, pp. 123–131, Sep. 20.
27. S. Chandravanshi, S. S. Sarma, and M. J. Akhtar, “Design of triple band differential rectenna for RF energy harvesting,” IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 2716–2726, Jun. 2018.
28. K. Gangwar and J. Tissier, “Modified log periodic spiral antenna for multi-band RF energy harvesting applications,” in Proc. IEEE Wireless Power Transfer Conf. (WPTC), 2019, pp. 573–577.
29. V. Palazzi et al., “A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 366–379, Jan. 2018.
30. R. Pandey, A. K. Shankhwar, and A. Singh, “Design, analysis, and optimization of dual side printed multiband antenna for RF energy harvesting applications,” Progr. Electromagn. Res., vol. 102, pp. 79–91, 2020.
31. N. Singh et al., “Low profile multiband rectenna for efficient energy harvesting at microwave frequencies,” Int. J. Electron., vol. 106, no. 12, pp. 2057–2071, 2019.
32. C. Song, P. Lu, and S. Shen, “Highly efficient omnidirectional integrated multi-band wireless energy harvesters for compact sensor nodes of Internet-of-Things,” IEEE Trans. Ind. Electron., early access, Jul. 21, 2020, doi: 10.1109/TIE.2020.3009586.