STRUCTURAL AND ELASTIC PROPERTIES OF AgNi10 ALLOY STUDIED WITH AB-INITIO CALCULATIONS
Abstract
First-principles calculations based on density functional theory (DFT) are used to calculate the structural, elastic and thermodynamic properties of the supersaturated solid-solution AgNi10 alloy, applied mainly to electrical contact materials. In this work, for the exchange-correlation energy, the generalized gradient approximation (GGA) functional is used. The calculated structural and electronic properties of supersaturated solid-solution AgNi10 alloys show that the occupation of Ni in the Ag lattice is ordered. All single-crystal elastic stiffness constants of the energetically and mechanically optimized stable AgNi10 model are calculated using the finite strain method and using the Voigt-Reuss-Hill approximation. Various anisotropic indices like the universal anisotropic index, shear anisotropic index, directional dependence of Young’s modulus, bulk modulus and others are calculated to study the elastic anisotropy. The strong anisotropy in the elastic properties of AgNi10 was confirmed. Phonon dispersions were carried out, showing that the AgNi10 crystal has dynamic stability. The Debye temperature is calculated from the elastic data by estimating the average sound velocity in the AgNi10. Furthermore, the vibrational thermodynamic properties (free energy, enthalpy, entropy and heat capacity) of AgNi10 are obtained successfully.
References
2 H. F. Yu,J. X. Lei, X. M. Ma, L. H. Zhu, Y. Lu, J. Xiang, W. Weng, Application of nanotechnology in a silver/graphite contact material and optimization of its physical and mechanical properties, Rare Metals , 23(2004) 1, 79-83, CNKI:SUN:XYJS.0.2004-01-025.
3 F. Chen, Y. Feng, H. Shao, Friction and wear behaviors of Ag/MoS2/G composite in different atomspheres and at different temperatures, Tribology Letters, 47(2012)1, 139-148, doi: 10.1007/s11249-012-9970-3.
4 B. Rehani, P. B. Joshi, P. K. Khanna, Fabrication of silver-graphite contact materials using silver nanopowders, Journal of Materials Engineering and Performance, 19(2010)1, 64-69, doi: 10.1007/s11665-009-9437-3.
5 T. B. Massalski, H. Okamoto, P. R. Subramanian, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990, 64-66.
6 F. R. de Boer, R. Boom, W. C. M. Mattens, Cohesion in Metals. North-Holland, Amsterdam, 1988, 95-98.
7 R. P. van Ingen, R. H. J. Fastenau, E. J. Mittemeijer, Formation of Crystalline AgxNi1-x solid solutions of unusually high supersaturation by laser ablation deposition, Physical Review Letters, 72(1994), 3116-3119, doi: https://doi.org/10.1103/PhysRevLett.72.3116.
8 J. W. Mayer, B. Y. Tsaur, S. S. Lau, Ion-beam-induced reactions in metal-semiconductor and metal-metal thin film structures, Nuclear Instruments and Methods, 182(1981), 66-67, doi: 10.1016/0029-554X(81)90666-2.
9 J. Xu, U. Herr, T. Klassen, Formation of supersaturated solid solution in the immiscible Ni-Ag system by mechanical alloying, J. Appl. Phys., 79(1996), 3935-3945, doi: 10.1063/1.361820.
10 J. H. He, E. Ma, Nanoscale phase separation and local icosahedral order in amorphous alloys of immiscible elements, Physical Review B, 64 (2001)14,144206, doi: https://doi.org/10.1103/PhysRevB.64.144206.
11J. H. He, H. W. Sheng, P. J. Schilling, C. L. Chien, E. Ma, Amorphous Structures in the Immiscible Ag-Ni System, Physical Review Letters, 86 (2001)13, 2826-2829, doi: https://doi.org/10.1103/PhysRevLett.86.2826.
12 J. A. Alonso, L. J. Gallego, J. A. Simozar, Construction of free-energy diagrams of amorphous alloys. Il Nuovo Cimento D, 12 (1990), 587-595, https://doi.org/10.1007/BF02453312.
13 http://www.pwscf.org.
14 D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
Physical Review B, 41(1990)13, 7892-7895, doi: https://doi.org/10.1103/PhysRevB.41.7892.
15 J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, 45(1992)23, 13244 -13249, doi: https://doi.org/10.1103/PhysRevB.45.13244.
16 H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, 13(1976)13, 5188-5192, doi: https://doi.org/10.1103/PhysRevB.13.5188.
17 N. I. Medvedeva, Y. N. Gornostyrev, D. L. Novikov, O. N. Mryasov, A. J. Freeman, Ternary site preference energies, size misfits and solid solution hardening in NiAl and FeAl, Acta Materialia, 46(1998)13, 3433-3442, doi: https://doi.org/10.1016/S1359-6454(98)00042-1.
18 S. Baroni, P. Giannozzi, A. Testa, Green’s-function approach to linear response in solids,
Physical Review Letters, 58(1987)18, 1861-1864, doi: https://doi.org/10.1103/PhysRevLett.58.1861.
19 R. P. van Ingen, R. H. J. Fastenau, E. J. Mittemeijer, Laser ablation deposition of Cu-Ni and Ag-Ni films: Nonconservation of alloy composition and film microstructure, Journal of Applied Physics, 76 (1994)13, 1871, https://doi.org/10.1063/1.357711.
20 G. Ghosh, M. Asta, Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results, Journal of Materials Research, 20(2005)11, 3102–3117, https://doi.org/10.1557/JMR.2005.0371.
21 V. I. Zubov, N. P.Tretiakov, J. N.Teixeira Rabelo, J. F.Sanchezortiz, Calculations of the thermal expansion, cohesive energy and thermodynamic stability of a Van der Waals crystal - fullerene C60, Physics Letters A, 194 (1994)3, 223-227, doi: https://doi.org/10.1016/0375-9601(94)91288-2
22 D.C. Wallace, Thermodynamics of Crystal, Wiley, New York, 1972.
23 O. Beckstein, J. E. Klepeis, G. L.W. Hart, O. Pankratov, First-principles elastic constants and electronic structure of α−Pt2Si and PtSi, Physical Review B, 63 (2001)13, 134112, https://doi.org/10.1103/PhysRevB.63.134112.
24 W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928.
25 A. Reuss, Berchung der Fiessgrenze von Mischkristallen auf Grund der Plastiziä tsbedingung für Einkristalle Z, Angew Math Mech, 9(1929), 49, doi: 10.1002/(ISSN)1521-4001.
26 R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc., London, Sect. A, 65 (1952), 349-354, doi: https://doi.org/10.1088/0370-1298/65/5/307.
27 A. M. Hao, X. C. Yang, X. M. Wang, Y. Zhu, X. Liu, R. P. Liu, First-principles investigations on electronic, elastic and optical properties of XC (X=SiX=Si, Ge, and Sn) under high pressure, J. Appl. Phys, 108 (2010), 063531, https://doi.org/10.1063/1.3478717.
28 K. Kim, W. R. L. Lambrecht, B. Segal, Electronic structure of GaN with strain and phonon distortions, Physical Review B, 50(1994)3, 1502-1505, doi: https://doi.org/10.1103/PhysRevB.50.1502.
29 L. Kleinman, Deformation Potentials in Silicon. I. Uniaxial Strain, Physical Review B,, 128(1962)4, 2614-2621, doi: https://doi.org/10.1103/PhysRev.128.2614.
30 S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philosophical Magazine, 45(1954) 367, 823-843, doi: 10.1080/14786440808520496.
31 D. G. Pettifor, M. Aoki, Bonding and structure of intermetallics: a new bond order potentia,
Philosophical Transactions of the Royal Society A, 334 (1991)1635, 439-449, doi: https://doi.org/10.1098/rsta.1991.0024.
32 I. N. Frantsevich, F. F. Voronov, S. A. Bokuta, in: I. N. Franstsevich (Ed.), Elastic
Constants and Elastic Moduli of Metals and Insulators Handbook, Kiev, Naukova
Dumka, 1983, pp. 60–180.
33 S. I. Ranganathan, M. Ostoja-Starzewski, Universal Elastic Anisotropy Index, Physical Review Letters, 101(2008)5, 055504, doi: https://doi.org/10.1103/PhysRevLett.101.055504.
34 D. H. Chung, W. R. Buessem, in: F.W. Vahldiek, S.A. Mersol (Eds.), Anisotropy in Single Crystal Refractory Compound, Plenum, New York, 1968, 217.
35 J. R. Rice, Dislocation nucleation from a crack tip: An analysis based on the Peierls concept, Journal of the Mechanics and Physics of Solids, 40 (1992)2, 239-271, doi: https://doi.org/10.1016/S0022-5096(05)80012-2.
36 V. Tvergaard, J. W. Hutchinson, Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy, Journal of the American Ceramic Society, 71(1988)3, 157-166, doi:
https://doi.org/10.1111/j.1151-2916.1988.tb05022.x.
37 J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 1985.
38 O. L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 24, 909-917 (1963)7, doi: https://doi.org/10.1016/0022-3697(63)90067-2.
39 E. Schreiber, O. L. Anderson, N. Soga, Elastic constants and their measurements, McGraw-Hill, New York, 1973.
40 M. E. Fine, L. D. Brown, H. L. Marcus, Elastic constants versus melting temperature in metals, Scripta Metallurgica, 18 (1984)9, 951-956, doi: https://doi.org/10.1016/0036-9748(84)90267-9.
41 M. A . Blanco, E. Francisco, V. Luana, GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model , Comput. Phys. Commun., 158 (2004), 57-72, doi: https://doi.org/10.1016/j.comphy.2003.12.001.
42 J. P. Poirier, Introduction to the Physics of the Earth's Interior, Cambridge University Press, Oxford. 2000.