EFFECT OF UPSETTING-EXTRUSION-UPSETTING ON THE RECRYSTALLIZATION OF AN Mg-9Gd-4Y-2Zn-0.5Zr ALLOY

  • Zhikang Peng School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
  • Jia Leichen School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
  • Guanshi Zhang School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
  • Zhimin Zhang School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
  • Qiang Wang School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
  • Jianmin Yu School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
  • Jian Xu School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
  • Yong Xue School of Materials Science and Engineering, North University of China, Taiyuan 030051
Keywords: magnesium alloy, upsetting-extrusion-upsetting, microstructure, texture

Abstract

In this study, the effect of upsetting-extrusion-upsetting (UEU) on the microstructure of an Mg-9Gd-4Y-2Zn-0.5Zr alloy and on dynamic recrystallization (DRX) was investigated. The results showed that after UEU, DRX occurred in the Mg-9Gd-4Y-2Zn-0.5Zr alloy. Namely, the grain refinement at the cross-sectional edges of UEU specimens was significant, with the grain size being refined from 8.27 µm in the necking region to 6.57 µm. Grain refinement is mainly caused by DRX where the long-period stacking order (LPSO) phase stimulates DRX around the grain boundaries through a particle-stimulated nucleation mechanism. DRX grains play an important role in weakening the texture by offsetting the severely deformed structure of deformed grains.

References

REFERENCES
[1] Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, F.S. Pan, Research advances in magnesium and magnesium alloys in 2020, J. Magnes. Alloy, 9 (2021), 705-747, doi: 10.1016/j.jma.2021.04.001
[2] V. Balaji, V.K.B. Raja, K. Palanikumar, Ponshanmugakumar, N. Aditya, and V. Rohit, Effect of heat treatment on magnesium alloys used in automotive industry: A review, Mater. Today. Proceedings, 46(2021), 3769-3771, doi: 10.1016/j.matpr.2021.02.017
[3] J. Rong, J.N. Zhu, W.L. Xiao, X.Q. Zhao, and C.L. Ma, A high pressure die cast magnesium alloy with superior thermal conductivity and high strength. Intermetallics, 139 (2021), 107350, doi: 10.1016/j.intermet.2021.107350
[4] N.P. Papenberg, S. Gneiger, I. Weißensteiner, P.J. Uggowitzer, and S. Pogatscher, Mg-Alloys for forging magnesium applications—A review, Materials, 13(2020), 1-61, doi: 10.3390/ma13040985
[5] G. Song, Z. Diao, X. Lv, and L.M. Liu, TIG and laser–TIG hybrid filler wire welding of casting and wrought dissimilar alloy, J. Manuf. Process., 34 (2018), 204-214, doi: 10.1016/j.jmapro.2018.06.005
[6] G.S. Zhang, Z.M. Zhang, X.B. Li, Z.M. Yan, X. Che, J.M. Yu, and Y.Z. Meng, Effects of repetitive upsetting-extrusion parameters on microstructure and texture evolution of Mg–Gd–Y–Zn–Zr alloy, J. Alloys Compd., 790 (2019), 48-57, doi: 10.1016/j.jallcom.2019.03.207
[7] Y.Z. Meng, J.M. Yu, K. Liu, H.S. Yu, F. Zhang, Y.J. Wu, Z.M. Zhang, N.L. Luo, and H.H. Wang, The evolution of long-period stacking ordered phase and its effect on dynamic recrystallization in Mg-Gd-Y-Zn-Zr alloy processed by repetitive upsetting-extrusion, J. Alloys Compd., 828 (2020), 154454, doi:10.1016/j.jallcom.2020.154454
[8] G.S. Zhang, Y.Z. Meng, F.F. Yan, Z. Gao, Z.M. Yan, Z.M. Zhang, Microstructure and texture evolution of Mg-RE-Zn alloy prepared by repetitive upsetting-extrusion under different decreasing temperature degrees, J. Alloys Compd., 815 (2020), 152452, doi: 10.1016/j.jallcom.2019.152452
[9] K. Luo, L. Zhang, G.H. Wu, W.C. Liu, and W.J. Ding, Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys, J. Magnes. Alloy, 7 (2019), 345-354, doi: 10.1016/j.jma.2019.03.002
[10] Y. Wu, S.H. Huang, Q. Chen, B. Feng, D.Y. Shu, and Z.W. Huang, Microstructure and mechanical properties of copper billets fabricated by the repetitive extrusion and free forging process, J. Mater. Eng. Perform., 28 (2019), 2063-2070, doi: 10.1007/s11665-019-03898-3.
[11] Q.D. Wang, Y.J. Chen, M.P. Liu, J.B. Lin, and H.J. Roven, Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression, Mater. Sci. Eng. A, 527 (2010), 2265-2273, doi: 10.1016/j.msea.2009.11.065
[12] X. Zhang, S.J. Lu, B. Zhang, X.B. Tian, Q.H Kan, and G.Z. Kang, Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations, Acta Mater., 202 (2021), 88-98, doi: 10.1016/j.actamat.2020.10.052
[13] A.Y. Zhang, R. Kang, L. Wu, H.C. Pan, H.B. Xie, Q.Y. Huang, Y.J. Liu, Z.R Ai, L.F. Ma, Y.P. Ren, and G.W. Qin, A new rare-earth-free Mg-Sn-Ca-Mn wrought alloy with ultra-high strength and good ductility, Mater. Sci. Eng. A, 754 (2019), 269-274, doi: 10.1016/j.msea.2019.03.095
[14] V.V. Karasiev, and S.X. Hu, Unraveling the intrinsic atomic physics behind x-ray absorption line shifts in warm dense silicon plasmas, Phys. Rev. E, 103 (2021), 033202, doi: 10.1103/PhysRevE.103.033202
[15] X.J. Zhang, F. Li, Y. Wang, C. Li, and X.M. Xiao, Recrystallization Behavior and Texture Evolution of Magnesium Alloy Bending Products under Staggered Extrusion, J. Mater. Eng. Perform., 30 (2021), 8108–8116, doi: 10.1007/s11665-021-06056-w
[16] Z.Y. Zhao, R.G. Guan, Y.F. Shen, and P.K. Bai, Grain refinement mechanism of Mg-3Sn-1Mn-1La alloy during accumulative hot rolling, J Mater Sci Technol, 91 (2021), 251-261, doi: 10.1016/j.jmst.2021.02.052
[17] G.S. Zhang, Y.Z. Meng, F.F. Yan, Z. Gao, Z.M. Yan, and Z.M. Zhang, Microstructure and texture evolution of Mg-RE-Zn alloy prepared by repetitive upsetting-extrusion under different decreasing temperature degrees, J. Alloys Compd., 815 (2020), 152452, doi: 10.1016/j.jallcom.2019.152452
[18] Y.W. Gui, L.X. Ouyang, Y.J. Cui, H.K. Bian, Q.N. Li, and A. Chiba, Grain refinement and weak-textured structures based on the dynamic recrystallization of Mg-9.80Gd-3.78Y-1.12Sm-0.48Zr alloy, J. Magnes. Alloy., 9 (2021), 456-466, doi: 10.1016/j.jma.2020.06.001
[19] W.L. Xu, J.M. Yu, G.Q. Wu, L.C. Jia, Z. Gao, Z. Miao, and Z.M. Zhang, Effect of Decreasing Temperature Reciprocating Upsetting-Extrusion on Microstructure and Mechanical Properties of Mg-Gd-Y-Zr Alloy, Metals, 10 (2020), 1-11, doi:10.3390/met10070985
[20] X.X. Zhang, Y. Lv, T. Hashimoto, J.O. Nilsson, and X.R. Zhou, Intergranular corrosion of AA6082 Al–Mg–Si alloy extrusion: The influence of trace Cu and grain boundary misorientation, J. Alloys Compd., 853 (2021), 157228, doi: 10.1016/j.jallcom.2020.157228
[21] Q. Liu, L.M. Fang, Z.W. Xiong, J. Yang, Y. Tan, Y. Liu, Y.J. Zhang, Q. Tan, C.C. Hao, L.H. Cao, J. Li, and Z.P. Gao, The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates, Mater. Sci. Eng. A, 822 (2021), 141704, doi: 10.1016/j.msea.2021.141704
[22] Y.D. Sun, W. Li, X.F. Shi, and L. Tian, A uniformly fine-grained Mg-Y-Nd-Zr magnesium alloy with simultaneously optimized strength and ductility processed by forging and ECAP, Mater. Res. Express., 7 (2020), 116520, doi: 10.1088/2053-1591/abc911
Published
2022-08-16
How to Cite
1.
Peng Z, Leichen J, Zhang G, Zhang Z, Wang Q, Yu J, Xu J, Xue Y. EFFECT OF UPSETTING-EXTRUSION-UPSETTING ON THE RECRYSTALLIZATION OF AN Mg-9Gd-4Y-2Zn-0.5Zr ALLOY. MatTech [Internet]. 2022Aug.16 [cited 2025Jun.15];56(4):351–358. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/372