EXPERIMENTAL INVESTIGATION OF ELECTRICAL DISCHARGE MACHINING OF INCONEL 718 USING A TiB2-Cu SINTERED COMPOSITE ELECTRODE
Abstract
Electrical discharge machining (EDM) is much preferred in modern precision-manufacturing industries owing to its ability to machine any metal regardless of its hardness. However, its constraint is that the selected metal should be an electrically conductive material. For the present investigation, an Inconel 718 alloy was selected for EDM, using a TiB2-Cu electrode made with powder metallurgy. Input factors, namely, the pulse current (Ip), pulse-on time (Ton) and gap voltage (Gv) were selected and their output responses were the surface roughness (SR) and material-removal rate (MRR). For the response surface, the Box Behnken technique was preferred when designing the experiments (DoE). An ANOVA test was performed to understand the influence of the selected input factors on the SR and MRR. The RSM integrated with a grey relational analysis (GRA) revealed that the optimal input parameters for better machining characteristics were: Ip = 10 A, Ton = 40 µs and Gv = 50 V. Besides, the results also showed that the pulse current more significantly influenced the output responses than the other parameters. Moreover, an increase in the gap voltage caused surface irregularities on the machined surface. Surface morphology of the machined surfaces was analysed through SEM and EDAX. Moreover, a certain amount of tool-material transfer was noted with the EDAX analysis.
References
2. T. Muthuramalingam, B. Mohan, A review on influence of electrical process parameters in EDM process, Archives of civil and mechanical engineering, 15(2015)1, 87-94.
3. A. S. Gill, S. Kumar, Investigation of Micro-Hardness in Electrical Discharge Alloying of En31 Tool Steel with Cu–W Powder Metallurgy Electrode, Arabian Journal for Science and Engineering, 43(2018),1499-1510, DOI: 10.1007/s13369-017-2960-x.
4. Y.L. Teng, L. Li, W. Zhang, N. Wang, C. C. Feng, H. J. Ren, Machining characteristics of PCD by EDM with Cu-Ni composite electrode, Materials and Manufacturing Processes, 35(2020)4, 442-448, DOI: 10.1080/10426914.2020.1718700.
5. A. Sarmah, S. Kar, P. K. Patowari, Surface modification of aluminum with green compact powder metallurgy Inconel-aluminum tool in EDM, Materials and Manufacturing Processes, 35(2020)10, 1104-1112, DOI: 10.1080/10426914.2020.1765253.
6. D. Tijo, S. Kumari, M. Masanta, Ceramic-metal Composite Coating on Steel Using a Powder Compact Tool Electrode by the Electro-Discharge Coating Process, Silicon 10(2017)4, 1625-1637, DOI: 10.1007/s12633-017-9646-6.
7. P.M. Kumar, K. Sivakumar, N. Jayakumar, Multiobjective optimization and analysis of copper–titanium diboride electrode in EDM of monel 400™ alloy, Materials and Manufacturing Processes, 33(2018)13, 1429-1437, DOI: 10.1080/10426914.2017.1415439.
8. M. Tanjilul, D.N.W. Keong, A. Senthil Kumar, Performance Evaluation of Al2O3 Nano Powder Mixed Dielectric for Electric Discharge Machining of Inconel 825, Materials and Manufacturing Processes, 36(2020)3, 341-350, DOI: 10.1080/10426914.2020.1832682.
9. M.Y. Lin, C.C. Tsaco, C.Y. Hsu, A. H. Chiou, P.C. Huang, Y.C. Lin, Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method. Transactions of Nonferrous Metals Society of China, 23(2013)3, 661-666, DOI:10.1016/S1003-6326(13)62513-3.
10. F. Jafarian, Electro discharge machining of Inconel 718 alloy and process optimization, Materials and Manufacturing Processes, 35(2020)1, 95-103, DOI: 10.1080 /10426914. 2014.930956.
11. K. Abhishek, S. Datta, B.B Biswal, S.S. Mahapatra, Machining performance optimization for electro‑discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(2017)9, 3499-3527, DOI 10.1007/s40430-016-0659-7.
12. P. Paswan, A. Pramanik, S. Chattopadhyaya, Machining performance of Inconel 718 using graphene nanofluid in EDM, Materials and Manufacturing Processes, 35(2020)1, 33-42, DOI: 10.1080/10426914.2020.1711924.
13. V. Aggarwal, S.S. Khangura, R. K. Garg, Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology, The International Journal of Advanced Manufacturing Technology, 79(2015)1-4, 31-47, DOI 10.1007/s00170-015-6797-8.
14. S.K. Ramuvel, S. Paramasivam, Study on tool steel machining with ZNC EDM by RSM, GREY and NSGA, Journal of Materials Research and Technology, 9(2020)3, 3885-3896, DOI: 10.1016/j.jmrt.2020.02.015.
15. S. Kumar, S.K. Ghoshal, P.K. Arora, L. Nagdeve, Multi-variable optimization in die-sinking EDM process of AISI420 stainless steel, Materials and Manufacturing Processes, 36(2020)5, 572-582, DOI: 10.1080/10426914.2020.1843678.
16. R.F. Mazarbhuiya, M. Rahang, Reverse EDM process for pattern generation using powder metallurgical green compact tool, Materials and Manufacturing Processes, 35(2020)15, 1741-1748, DOI: 10.1080/10426914.2020.1802036.
17. M. Li, Z. Yang, H. Dong, Y. Zhou, Y. Liu, Machining performance of high energy die-sinking electrical discharge machining on GH2132, Materials and Manufacturing Processes, 35(2020)9, 1024-1031, DOI:10.1080/10426914.2020.1758328.
18. S. Nair, A. Dutta, R. Narayanan, A. Giridharan, Investigation on EDM machining of Ti6Al4V with negative polarity brass electrode, Materials and Manufacturing Processes, 34(2019)16, 1824-1831, DOI: 10.1080/10426914.2019.1675891.
19. M. Rahang, P.K. Patowari, Pattern generation by selective area deposition of material in EDM, Materials and Manufacturing Processes, 34(2019)16, 1847-1854, DOI:10.1080 /10426914.2019.1669798.
20. A.R. Siddique, S. Mohanty, A.K. Das, Microelectrical discharge coating of Titanium alloy using WS2 and Brass P/M electrode, Materials and Manufacturing Processes, 34(2019)15, 1761-1774, DOI: 10.1080/10426914.2019.1666988.
21. P.K. Patowari, P. Saha, P.K. Mishra, Artificial Neural Network Model in Surface Modification by EDM Using Tungsten–copper Powder Metallurgy Sintered Electrodes, The International Journal of Advanced Manufacturing Technology, 51(2010)5-8, 627-638, DOI: 10.1007/s00170-010-2653-z.
22. P.M. Kumar, K. Sivakumar, N. Jayakumar, Surface Modification on OHNS Steel Using Cu-CrB2 Green Compact Electrode in EDM, Materials Today Proceedings, 5(2018)9, 17389-17395.
23. S.H. Chen, K.T. Huang, Deep hole electrical discharge machining of nickel-based Inconel-718 alloy using response surface methodology, The International Journal of Advanced Manufacturing Technology, 117(2021)11, 3281-3295, DOI: 10.1007/s00170-021-07836-3.
24. P.K. Obratanskia, K. Zagorskia, J. Cieslika, E. Lazaros, Papazogloub, A. Markopoulosb, Surface Topography of Ti 6Al 4V ELI after High Power EDM, Procedia Manufacturing, 47(2020), 788-794, DOI: 10.1016/j.promfg.2020.04.242.
25. A. Kumar, A. Mandal, A.R. Dixit, A.K. Das, Performance Evaluation of Al2O3 Nano Powder Mixed Dielectric for Electric Discharge Machining of Inconel 825, Materials and Manufacturing Processes, 33(2017)9, 986-995, DOI: 10.1080/10426914.2017.1376081.
26. T. Muthuramalingam, B. Mohan, A. Jothilingam, Effect of Tool Electrode Resolidification on Surface Hardness in Electrical Discharge Machining, Materials and Manufacturing Processes, 29(2014)11-12, 1374-1380, DOI: 10.1080/10426914.2014.930956.
27. P. Mandal, S.C. Mondal, Surface Characteristics of Mild Steel Using EDM with Cu-MWCNT Composite Electrode, Materials and Manufacturing Processes, 34(2019)12, 1326-1332, DOI: 10.1080/10426914.2019.1605179.
28. R. Tyagi, N.K. Mahto, A.K. Das, A. Mandal, Preparation of MoS2+Cu Coating through the EDC Process and Its Analysis, Surface Engineering, 36(2020)1, 86-93, DOI: 10.1080/02670844.2019.1615744.
29. R. Sajeevan, A.K. Dubey, Machining quality comparison of Al-TiB2 composite using conventional EDM and magnetic force-assisted powder-mixed EDM, Advances in Materials and Processing Technologies, (2021), DOI: 10.1080/2374068X.2021.1945299.
30. M. Sivaraj, N. Selvakumar, Experimental Analysis of Al-TiC Sintered Nano Composite on EDM Process Parameters Using ANOVA, Materials and Manufacturing Processes, 31(2016)6, 802-812, DOI: 10.1080/10426914.2015.1048471.