CHARACTERIZATION OF HYBRID ALUMINUM COMPOSITES REINFORCED WITH Al2O3 PARTICLES AND WALNUT-SHELL ASH

  • Jasmina Petrović University of Belgrade, Tehnical Faculty in Bor
  • Srba Mladenović University of Belgrade, Tehnical Faculty in Bor, Vojske Jugoslavije 12, Bor, Serbia
  • Ivana Marković University of Belgrade, Tehnical Faculty in Bor, Vojske Jugoslavije 12, Bor, Serbia
  • Silvana Dimitrijević Mining and Metallurgy Institute Bor, Zeleni bulevar 35, Bor, Serbia
Keywords: aluminium alloy, reinforcement, walnut shell, ash

Abstract

Hybrid aluminum composites obtained with stir casting were investigated in this study. Aluminum alloy EN AW 6061 was reinforced with particles of Al2O3 and walnut-shell ash (WSA). The weight fraction of Al2O3 was constant (5 w/%) and for the walnut-shell ash, it was (1, 2 and 3) w/%. The morphology of the composites and particle distribution were examined with an optical microscope and scanning electron microscope. Microstructural studies showed a uniform distribution of the reinforced particles in all the investigated samples. A chemical analysis of the reinforcing particles on the samples’ surfaces was done using an energy-dispersive spectrometer. The changes in the mechanical properties including the hardness, tensile strength and elongation in relation to the increase in the weight fraction of ash were investigated. The results showed that the hardness and tensile strength increase, while the elongation decreases with an increase in the weight fraction of ash in the composites. The mechanical properties of the obtained composites showed improvement compared to the EN AW 6061 alloy.

References

1. W. Calister, D. Rethwisch, Materials Science and Engineering, An Introduction, 9th ed., New York, NY: Wiley, 2014.
2. S. Mazumdar, Composites Manufacturing: Materials, Product, and Process Engineering, USA: PRC Press, 2001.
3. K. K. Chawla, Composite Materials - Science and Engineering, 2nd ed., New York: Springer-Verlag, 1997.
4. S. Mazumdar, Composites Manufacturing: Materials, Product, and Process Engineering, 1th ed., Boca Raton, USA: CRC Press, 2001.
5. F. Campbell, Elements of Metallurgy and Engineering Alloys, 1th ed., USA: ASM International, 2008.
6. B. Yigezu, P. Jha, M. Mahapatra, The key attributes of synthesizing ceramic particulate reinforced Al-based matrix composites through stir casting, Materials and Manufacturing Processes, 28 (2013) 9, 969–979, doi: 10.1080/10426914.2012.677909
7. B. Yigezu, M. Mahapatra, P. Jha, Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminum alloy metal matrix composite, Journal of Minerals and Materials Characterization and Engineering, 4 (2013) 1, 124-130, doi: 10.4236/jmmce.2013.14022
8. A. Telang, A. Rehman, S. Das, Alternate materials in automobile brake disc applications with emphasis on Al composites—A technical review, Journal of Engineering Research and Studies, 1 (2010) 1, 35-46.
9. M. Zhou, L. Ren, L. Fan, Y. Zhang, T. Lu, G. Quan, M. Gupta, Progress in research on hybrid metal matrix composites, Journal of Alloys and Compounds, 838 (2020), 1-40,
doi: 10.1016/j.jallcom.2020.155274
10. M. O. Bodunrin, K. K. Alaneme, L. H. Chown, Aluminium matrix hybrid composites: A review of reinforcement philosophies; Mechanical, corrosion and tribological characteristics, Journal of Materials Research and Technology, 4 (2015) 4, 434–445,
doi: 10.1016/j.jmrt.2015.05.003
11. M. K. Sahu, R. K. Sahu, Optimization of stirring parameters using CFD simulations for HAMCs synthesis by stir casting process, Transactions of the Indian Institute of Metals, 70 (2017) 10, 2563–2570, doi:10.1007/s12666-017-1119-5
12. W. Calister, D. Rethwisch, Materials Science and Engineering, 9th ed, New York: Wiley, 2014.
13. A. Vencl, V. Šljivić, M. Pokusová, H. Sun, E. Zadorozhnaya, I. Bobić, Production, microstructure and tribological properties of Zn-Al/Ti metal-metal composites reinforced with alumina nanoparticles, Inter Metalcast, 15 (2021) 4, 1402–1411, doi: 10.1007/s40962-020-00565-5
14. S. Sajjadi, H. Ezatpour, P. Torabi, Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes, Mater Design, 34 (2012), 106–111, doi: 10.1016/j.matdes.2011.07.037
15. S. Sajjadi, P. Torabi, H. Ezatpour, A. Sedghic, Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties, Journal of Alloys and Compounds, 511 (2012) 1, 226-231, doi: 10.1016/j.jallcom.2011.08.105
16. S. Tahamtan, A. Halvaee, M. Emamy, M.S. Zabihi, Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology, Materials and Design, 49 (2013), 347-359, doi: 10.1016/j.matdes.2013.01.032
17. H. Ezatpour, S. Sajjadi, M. Sabzevar, Y. Huang, Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting, Materials and Design, 55 (2014), 921-928, doi:10.1016/j.matdes.2013.10.060
18. A. Kareem, J. Qudeiri, A. Abdudeen, T. Ahammed, A. Ziout, A review on AA 6061 metal matrix composites produced by stir casting, Materials, 14 (2021) 1, 175, doi: 10.3390/ma14010175
19. M. Sahu and R. Sahu, Synthesis, microstructure and hardness of Al 7075/B4C/Fly-ash, Materials Today: Proceedings, 27 (3) (2020), 2401-2406, doi: 10.1016/j.matpr.2019.09.150
20. S. Kim, J. Li, Machine learning of metal-ceramic wettability, Journal of Materiomics, Article in press, 2021, doi:10.1016/j.jmat.2021.03.014
21. K. Alaneme, I. Akintunde, P. Olubambi, T. Adewale, Fabrication characteristics and mechanical behaviour of rice husk ash – Alumina reinforced Al-Mg-Si alloy matrix hybrid composites, Journal of Materials Research and Technology, 2 (2013) 1, 60-67, doi: 10.1016/j.jmrt.2013.03.012
22. K. Alaneme, T. Adewale, Influence of rice hush ash – silicon carbide weight ratios on the mechanical behaviour of Al-Mg-Si alloy matrix hybrid composites, Tribology in Industry, 35 (2013) 2, 163‐172.
23. G. Narasaraju, D. Raju, Characterization of hybrid rice husk and fly ash-reinforced aluminium alloy (AlSi10Mg) composites, Materials Today: Proceedings, 2 (2015) 4-5, 3056-3064, doi:10.1016/j.matpr.2015.07.245
24. J. Selvam, D. Smart, I. Dinaharan, Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting, Materials and Design, 49 (2013), 28-34, doi:10.1016/j.matdes.2013.01.053
25. Y. R. Loh, D. Sujan, M. E. Rahman, C. A. Das, Review Sugarcane bagasse - The future composite material: A literature review, Resources, Conservation and Recycling, 75 (2013), 14-22, doi:10.1016/j.resconrec.2013.03.002
26. D. Prasad, A. Krishna, Production and mechanical properties of A356. 2/RHA composites, International Journal of Advanced Science and Technology, 33 (2011), 51-58.
27. BS EN 573-3:2019 Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products, Pilsen, Czech Republic.
28. ASTM E384-10:2010 Standard test method for Knoop and Vickers hardness of materials, ASTM international, West Conshohocken, USA.
29. ISO 6892-1:2019 Metallic materials — Tensile testing — Part 1: Method of test at room temperature, Geneva, Switzerland.
30. M. Kumar, S. Begum, C. Pruncu, M. Asl, Role of homogeneous distribution of SiC reinforcement on the characteristics of stir cast Al–SiC composites, Journal of Alloys and Compounds, 869 (2021), 159250, doi:10.1016/j.jallcom.2021.159250
31. S. Kulkarni, J. Meghnani, A. Lal, Effect of fly ash hybrid reinforcement on mechanical property and density of aluminium 356 alloy, Procedia Material Science, 5 (2014), 746–754, doi: 10.1016/j.mspro.2014.07.324
32. W. S. Miller, F. J. Humphreys, Strengthening mechanisms in perticulate metal matrix composites, Scripta Metallurgica et Materialia, 25 (1991) 11, 2623-2626.
33. N. Raghavendra, V. Ramamurthy, Effect of particle size and weight fraction of alumina reinforcement on wear behavior of aluminum metal matrix composites, International Journal of Innovative Research in Science, Engineering and Technology, 3 (2014) 4, 11191-11198.
34. C. Saravanan, K. Subramanian, V. Krishnan, R. Narayanan, Effect of particulate reinforced aluminium metal matrix composite—A review, Mechanics and Mechanical Engineering, 19 (2015) 1, 23-30.
35. S. Saravanana, M. Kumar, Effect of mechanical properties on rice husk ash reinforced aluminum alloy (AlSi10Mg) matrix composites, Procedia Engineering, 64 (2013), 1505-1513, doi:10.1016/j.proeng.2013.09.232
36. M. Kok, K. Ozdin, Wear resistance of aluminium alloy and its composites reinforced by Al2O3 particles, Journal of Materials Processing Technology, 183 (2007) 2-3, 301–309, doi:10.1016/j.jmatprotec.2006.10.021
37. N. Ashok, P. Shanmughasundaram, Effect of particles size on the mechanical properties of SiC-reinforced aluminium 8011 composites, Materials and Technology, 51 (2017) 4, 667-672, doi:10.17222/mit.2016.252
38. M. K. Surappa, Synthesis of fly ash particle reinforced A356 Al composites and their characterization, Materials Science and Engineering: A, 480 (2008) 1-2, 117-124, doi: 10.1016/j.msea.2007.06.068
Published
2022-04-06
How to Cite
1.
Petrović J, Mladenović S, Marković I, DimitrijevićS. CHARACTERIZATION OF HYBRID ALUMINUM COMPOSITES REINFORCED WITH Al2O3 PARTICLES AND WALNUT-SHELL ASH. MatTech [Internet]. 2022Apr.6 [cited 2022Jun.27];56(2):115–122. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/365