• Kavitha Kalidass Government College of Engineering, Salem, Tamilnadu, India
  • Vijayan Raghavan Government College of Engineering, Bargur, Tamilnadu, India
Keywords: fibre-metal laminates, warm deep drawing, lightweight engineering, embossing process, adhesive bonding


Fibre-metal laminates (FMLs) are a multi-layered prominent class of hybrid composites gaining keen attention among researchers due to the combined advantages of the products used for aerospace and lightweight applications. This work involves one such investigation of hybrid sandwich laminate composites of aluminium sheets and a glass-fibre-reinforced thermoplastic (GFRP) core. FRPs can be conjoined with other lightweight materials to enhance the weight-to-strength forming performance and reduce manufacturing costs. However, the thickness reduction of the components for lightweight products makes the FRP-to-metal amalgamation a great challenge. The process of warm embossing is imposed to enhance the quality of single-lap adhesive bonding in FRPs and AA 6061 thin sheets. In this investigation, the formability of a FML made of AA 6061 and GFRP is predicted based on its deformation and wrinkle formation when it is processed during deep drawing. This research paper deals with analytical and experimental results regarding the prediction of deformation cause and effect in fabricated composite laminates with orientation angles of (90°; 0°; 60°; 30°; –45°; 45°). The method of evaluation combines the usage of ANSYS PrepPost with an explicit-dynamics module that bolsters designing, drafting and analysis.


1. Asghar R, Rehman F, Ullah Z, Qamar A, Ullah K,. Electric vehicles and key adaptation challenges and prospects in Pakistan: A comprehensive review. Journal of Cleaner Production. 2020 Aug 6:123375.
2. Bielawski R. Composite materials in military aviation and selected problems with implementation. Review of the Air Force Academy. 2017(1):11. DOI: 10.19062/1842-9238.2017 .15.1.2
3. Fischer T, Grubenmann M, Harhash M, Hua W, Heingärtner J, Experimental and numerical investigations on the quasi-static structural properties of fibre metal laminates processed by thermoforming. Composite Structures. 2021 Feb 15;
4. Sherkatghanad E, Lang L, Blala H, Li L, Alexandrov S. Fiber Metal Laminate Structure, a good replacement for monolithic and composite materials. In IOP Conference Series: Materials Science and Engineering 2019 Jul 1 (Vol. 576, No. 1, p. 012034). IOP Publishing. doi:10.1088/1757-899X/576/1/012034
5. Ishak NM, Sivakumar D, Mansor MR. The application of TRIZ on natural fibre metal laminate to reduce the weight of the car front hood. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018 Feb; 40 (2):1-2. doi: 10.1007/s40430-018-1039-2
6. Sherkatghanad E, Lang L, Liu S, Wang Y. Innovative approach to mass production of fiber metal laminate sheets. Materials and Manufacturing Processes. 2018 Apr 4;33 (5) : 552-63. : 10.1080/10426914.2017.1364864
7. Ding Z, Wang H, Luo J, Li N. A review on forming technologies of fibre metal laminates. International Journal of Lightweight Materials and Manufacture. 2021 Mar 1;4(1):110-26. doi: 10.1016/j.ijlmm.2020.06.006
8. Chen Y, Wang Y, Wang H. Research progress on interlaminar failure behavior of fiber metal laminates. Advances in Polymer Technology. 2020 Mar doi: 10;2020. 10.1155/2020/3097839
9. Ucan H, Apmann H, Graßl G, Krombholz C, Fortkamp K, Nieberl D, Schmick F, Nguyen C, Akin D. Production technologies for lightweight structures made from fibre–metal laminates in aircraft fuselages. CEAS Aeronautical Journal. 2019 Jun;10(2):479-89. doi:10.1007/s13272-018-0330-3
10. Mouritz AP. Introduction to aerospace materials. Elsevier; 2012 May 23. doi: 10.1533/9780857095152.1
11. Tepylo N, Huang X, Patnaik PC. Laser‐based additive manufacturing technologies for aerospace applications. Advanced Engineering Materials. 2019 Nov;21(11):1900617. doi: 10.1002/adem.201900617
12. Fielding JP. Introduction to aircraft design. Cambridge University Press; 2017 Apr 3.
13. Hassan MH, Othman AR, Kamaruddin S. A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures. The International Journal of Advanced Manufacturing Technology. 2017 Aug;91(9):4081-94. doi: 10.1007/s00170-017-0096-5
14. Buenrostro E, Whisler D. Impact response of a low-cost randomly oriented fiber foam core sandwich panel. Journal of Composite Materials.2018Oct;52(25):3429-44.
15. Heyser, P, "Increased load bearing capacity of mechanically joined FRP/metal joints using a pin structured auxiliary joining element." Materials Testing 62.1 (2020): 55-60.
16. von HPF Silva MT, Camanho PP, Marques AT, Castro PM. 3D-reinforcement techniques for co-bonded CFRP/CFRP and CFRP/metal joints: a brief review. Ciência & Tecnologia dos Materiais. 2017Jan 1; 9(1):e102-7. doi: 10.1016/ j.ctmat. 2016.07.011
17. Galińska A. Mechanical joining of fibre reinforced polymer composites to metals—A review. Part I: Bolted joining. Polymers. 2020 Oct;12(10):2252. doi: 10.3390/polym 12102252
18. Cui W, Fernando D, Heitzmann M, Gattas JM. Manufacture and structural performance of modular hybrid FRP-timber thin-walled columns. Composite Structures. 2021 Mar 15. 113506
19. Huang Z, Sugiyama S, Yanagimoto J. Applicability of adhesive–embossing hybrid joining process to glass-fiber-reinforced plastic and metallic thin sheets. Journal of Materials Processing Technology. 2014 Oct 1;214(10):2018-28. doi: 10.1016/j.jmatprotec.2013.11.020
20. Dwivedi R, Agnihotri G. Study of deep drawing process parameters. Materials Today: Proceedings. 2017 Jan 1;4(2):820-6. 10.1016/j.matpr.2017.01.091
21. Behrens BA, Hübner S, Neumann A. Forming sheets of metal and fibre-reinforced plastics to hybrid parts in one deep drawing process. Procedia Engineering. 2014 Jan 1;81:1608-13. doi: 10.1016/j.proeng.2014.10.198
22. Kumari NL, Mehar A, Abdulrahman M, Tatineni S, Shashank EV, Muthyala JT. Performance analysis of ply orientation in composite laminates. Materials Today: Proceedings. 2018 Jan 1;5(2):5984-92. doi: 10.1016/ j.matpr. 2017.12.200
23. Kotkunde N, Badrish A, Morchhale A, Warm deep drawing behavior of Inconel 625 alloy using constitutive modelling and anisotropic yield criteria. International Journal of Material Forming. 2020 May;13(3):355-69. doi: 10.1007/s12289-019-01505-3
24. Onur, Alan Gordon Leacock, Hakan Gürün, Forming-Limit diagrams and strain-rate-dependent mechanical properties of AA6019-T4 And AA6061-T4 Aluminium Sheet Materials, Materials and technology 50 (2016) 6, 1005–1010 doi:10.17222/mit.2015. 259
25. Dos Santos FM, de Oliveira LA, Bueno AH, Freire RT, da Silva LJ, del Pino GG. The Effect of Aluminium Surface Treatments on the Bonding Properties of Silica-Modified Epoxy Adhesive Joints: A Statistical Approach. Journal of Research Updates in Polymer Science. 2021 Mar 3;10:17-26. DOI: 10.6000/1929-5995.2021.10.3
26. Zhu W, Xiao H, Wang J, Fu C. Characterization and properties of AA6061-based fiber metal laminates with different aluminum-surface pretreatments. Composite Structures. 2019 Nov 1;227:111321. doi:10.1016/ j.compstruct. 2019.111321
27. Peng H, Chen C, Zhang H, Ran X. Recent development of improved clinching process. The International Journal of Advanced Manufacturing Technology. 2020 Sep 21:1-31. doi: 10.1007/s00170-020-05978-4
28. Huang Z, Sugiyama S, Yanagimoto J. Adhesive–embossing hybrid joining process to fiber-reinforced thermosetting plastic and metallic thin sheets. Procedia Engineering. 2014 Jan 1;81:2123-8. doi: 10.1007/s00170-020-05978-4
29. Fischer T, Grubenmann M, Harhash M, Hua W, Heingärtner J, Hora P, Palkowski H, Ziegmann G. Experimental and numerical investigations on the quasi-static structural properties of fibre metal laminates processed by thermoforming. Composite Structures. 2021 Feb 15;258:113418. doi: 10.1016/j.compstruct.2020.113418
30. Kavitha K, Vijayan R, Sathishkumar T. Fibre-metal laminates: A review of reinforcement and formability characteristics. Materials Today: Proceedings. 2020 Jan 1;22:601-5,
31. Rezaei Ashtiani H, Ganji Arjenki M. Experimental and Numerical Investigation of Warm Deep Drawing Process of AA5052 Aluminum Alloy. Iranian Journal of Materials Forming. 2020 Oct 30;7(2):56-69. doc/ 1170750/
32. Wang PY, Xiang N, Wang ZJ, Li ZX. The rapid response of forming medium’s properties to variable loading types of magnetic field and consequent field-dependent sheet formability. Journal of Manufacturing Processes. 2018 Jan 1;31:468-79. doi: 10.1016/j.jmapro.2017.12.006
33. Ayachi N, Guermazi N, Pham CH, Manach PY. Development of a Nakazima Test Suitable for Determining the Formability of Ultra-Thin Copper Sheets. Metals. 2020 Sep;10(9):1163. doi: 10.3390/met10091163
34. Blala H, Lang L, Khan S, Li L. A comparative study on the GLARE stamp forming behavior using cured and non-cured preparation followed by hot-pressing. The International Journal of Advanced Manufacturing Technology. 2021 May 13:1-3.
35. Schneider R, Grant RJ, Schlosser JM, Rimkus W, Radlmayr K, Grabner F, Maier C. An investigation of the deep drawing behavior of automotive aluminum alloys at very low temperatures. Metallurgical and Materials Transactions A. 2020 Mar;51(3):1123-33. doi: 10.1007/s11661-019-05584-4
36. Atul S T, Babu ML. A review on effect of thinning, wrinkling and spring-back on deep drawing process. Proceedings of the Institution of Mechanical Engineers, PartB: Journal of Engineering Manufacture. 2019 Mar; 233(4):1011-36. doi: 10.1177/0954405417752509
37. Ali Kurun, Ersin Topal, Investigation of hole effects on the critical buckling load of laminated composite plates, Materials and technology 50 (2016) 1, 23–27, doi:10.17222/mit.
How to Cite
Kalidass K, Raghavan V. NUMERICAL AND EXPERIMENTAL INVESTIGATIONS ON GFRP AND AA 6061 LAMINATE COMPOSITES FOR DEEP-DRAWING APPLICATIONS. MatTech [Internet]. 2022Apr.6 [cited 2022Jun.27];56(2):107–114. Available from: