EFFECT OF COOLING RATE ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SOLUTION-TREATED Mg-9Gd-4Y-2Zn-0.5Zr ALLOY

  • Yong Xue School of Materials Science and Engineering, North University of China, Taiyuan 030051
  • Zixuan Wang School of Materials Science and Engineering, North University of China, Taiyuan, China
  • Leichen Jia School of Materials Science and Engineering, North University of China, Taiyuan, China
  • Jie Zheng School of Materials Science and Engineering, North University of China, Taiyuan, China
  • Zhimin Zhang School of Materials Science and Engineering, North University of China, Taiyuan, China
  • Jianmin Yu School of Materials Science and Engineering, North University of China, Taiyuan, China
  • Xi Zhao School of Materials Science and Engineering, North University of China, Taiyuan, China
Keywords: cooling rate, solution treatment, microstructure, mechanical properties

Abstract

Different cooling rates, such as room temperature water cooling (WQ), furnace cooling (FC), and water cooling + furnace cooling (FC +WQ), were introduced to study the effect on the solution-treated Mg-9Gd-4Y-2Zn-0.5Zr (w/%) alloy microstructure and mechanical properties. The grain size decreases as the cooling rate increases. With the lengthening of the cooling process time, the LPSO phase had enough time to nucleate and diffuse, the LPSO (long-period stacking order) phase filled the whole matrix crystal grains at the same time. In the process of furnace cooling and water cooling, the brightness of the LPSO phase was different, so it could be seen that the cooling rate would affect the contrast and morphology of the LPSO phase. The tensile yield strengths of the samples cooled with the furnace were better than those of the water-cooled samples, but their ultimate tensile strength and elongation to failure were poor. The fracture modes of the samples under different cooling rates were all subject to cleavage fracture, and the number and area of the cleavage planes and cleavage steps increased with the decrease of cooling speed, and the tearing area decreased, resulting in poor ultimate tensile strength and stretchability.

References

[1] Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, F.S. Pan, Research advances in magnesium and magnesium alloys in 2020, J. Magnes. Alloy, 9 (2021), 705-747, doi: 10.1016/j.jma.2021.04.001
[2] T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnes. Alloy, (7)2019, 536-544, doi: 10.1016/j.jma.2019.08.001
[3] J.F. Song, J. She, D.L. Chen, F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloy, 8 (2020), 1-41, doi: 10.1016/j.jma.2020.02.003
[4] J.S. Xie, J.H. Zhang, Z.H. You, S.J. Liu, K. Guan, R.Z. Wu, J. Wang, J. Feng, Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying, J. Magnes. Alloy, 9 (2021), 41-56, 10.1016/j.jma.2020.08.016
[5] H.C. Pan, Y.P. Ren, H. Fu, H. Zhao, L.Q. Wang, X.Y. Meng, G.W. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, J. Alloys Compd., 663 (2016), 321-331, doi: 10.1016/j.jallcom.2015.12.057
[6] S.H. You, Y.D. Huang, K.U. Kainer, N. Hort, Recent research and developments on wrought magnesium alloys, J. Magnes. Alloy, 5 (2017), 239-253, doi: 10.1016/j.jma.2017.09.001
[7] K. Luo, L. Zhang, G.H. Wu, W.C. Liu, W.J. Ding, Effect of Y and Gd content on the microstructure and mechanical properties of Mg-Y-RE alloys, J. Magnes. Alloy, 7 (2019), 345-354, doi: 10.1016/j.jma.2019.03.002
[8] J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, M.L. Zhang, Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems, J. Magnes. Alloy, 6 (2018), 277-291, doi: 10.1016/j.jma.2018.08.001
[9] X.Z. Jin, W.C. Xu, Z.Z. Yang, C. Yuan, D.B. Shan, B.G. Teng, B.C. Jin, Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy, J. Mater. Sci. Technol., 45 (2020),133-145, doi: 10.1016/j.jmst.2019.11.021
[10] B. Li, B.G. Teng, W.C. Xu, Hot Deformation Characterization of Homogenized Mg-Gd-Y-Zn-Zr Alloy During Isothermal Compression, JOM, 71 (2019), 4059-4070, doi: 10.1007/s11837-019-03556-y
[11] X.J. Zhou, Y. Yao, J. Zhang, X.M. Chen, W.Y. Huang, J. Pan, H.R. Wang, M.P. Weng, A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior, J. Mater. Sci. Technol., 70 (2021), 156-167, doi: 10.1016/j.jmst.2020.08.054
[12] X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, Z.Y. Chen. Mechanical Properties of the Mg-Gd-Y-Zn-Zr Alloys with Different Morphologies of Long-Period Stacking Ordered Phases, J. Master. Eng. Perform., 27 (2018), 6237-6245, doi: 10.1007/s11665-018-3713-z
[13] D. Han, H.M. Chen, Q.H. Zang, Y.X. Qian, H.W. Cui, L. Wang, J. Zhang, Y.X. Jin. Effect of solution treatment on microstructure and properties of Mg-6Gd-3Y-1.5Zn-0.6Zr alloy, Mater. Charact., 163 (2020), 110295, doi: 10.1016/j.matchar.2020.110295
[14] C. Xu, M. Y. Zheng, K. W u, E.D. Wang, G.H. Fan, S.W. Xu, S. Kamado, X. D. Liu, G. J. Wang, X. Y. Lv, Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg-Gd-Y-Zn-Zr alloy, Mater. Sci. Eng., A, 559 (2013), 364-370, doi: 10.1016/j.msea.2012.08.112
[15] L. Xiao, G.Y. Yang, H. Qin, J.Q. Ma, W.Q. Jie, Microstructure evolution and quench sensitivity characterizations of Mg-9.5Gd-0.9Zn-0.5Zr alloy, Vacuum, 181 (2020), 109651, doi: 10.1016/j.vacuum.2020.109651
[16] K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, Y. Kojima, Alloy Development of High Toughness Mg-Gd-Y-Zn-Zr Alloys, Mater. Trans., JIM, 47 (2006), 1066-1070.
[17] X.X. Wei, L. Jin, S. Dong, F.H. Wang, J. Dong, Effect of Zn / (Gd + Y) ratio on the microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy Mater. Charact., 169 (2020), 110670, doi: 10.1016/j.matchar.2020.110670
[18] S. Zhang, G. Y. Yuan, C. Lu, W. J. Din, The relationship between (Mg, Zn)3RE phase and 14H-LPSO phase in Mg-Gd-Y-Zn-Zr alloys solidified at different cooling rates, J. Alloys Compd., 509 (2011), 3515-3521, doi: 10.1016/j.jallcom.2010.12.136
[19] C. Xu, M.Y. Zheng, Y.Q. Chi, X.J. Chen, K. Wu, E.D. Wang, G.H. Fan, P. Yang, G.J. Wang, X.Y. Lv, S.W. Xu, S. Kamado. Microstructure and mechanical properties of the Mg-Gd-Y-Zn-Zr alloy fabricated by semi-continuous casting, Mater. Sci. Eng., A, 549 (2012), 128-135, doi: 10.1016/j.msea.2012.04.018
[20] X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, X.Z. Han, Z.Y. Chen, Evolution of LPSO Phases and Their Effect on Dynamic Recrystallization in a Mg-Gd-Y-Zn-Zr Alloy, Metall. Mater. Trans. A, 48 (2017), 3062-3072, doi: 10.1007/s11661-017-4081-2
[21] C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, Microstructure and mechanical properties of rolled sheets of Mg-Gd-Y-Zn-Zr alloy: As-cast versus as-homogenized, J. Alloys Compd., 528 (2012), 40-44, doi: 10.1016/j.jallcom.2012.03.023
[22] C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu, S. Kamado, Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy [J]. Sci. Rep., 7 (2017), 40846, doi: 10.1038/srep40846
[23] W.T. Sun, X.G. Qiao, M.Y. Zheng, N. Hu, N. Gao, M.J. Starink, Evolution of long-period stacking ordered structure and hardness of Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy during processing by high pressure torsion, Mater. Sci. Eng., A, 738 (2018), 238-252, doi: 10.1016/j.msea.2018.09.063
[24] X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, Z.Y. Chen, Mechanical Properties of the Mg-Gd-Y-Zn-Zr Alloys with Different Morphologies of Long-Period Stacking Ordered Phases, J. Master. Eng. Perform., 27 (2018), 6237-6245, doi: 10.1007/s11665-018-3713-z
[25] J.X. Zheng, B. Chen, Interactions between long-period stacking ordered phase and β′ precipitate in Mg-Gd-Y-Zn-Zr alloy: Atomic-scale insights from HAADF-STEM, Mater. Lett., 176 (2016), 223-227, doi: 10.1007/s11665-018-3713-z
[26] Y.Z. Meng, J.M. Yu, K. Liu, H.S. Yu, F. Zhang, Y.J. Wu, Z.M. Zhang, N.N. Luo, H.H. Wan, The evolution of long-period stacking ordered phase and its effect on dynamic recrystallization in Mg-Gd-Y-Zn-Zr alloy processed by repetitive upsetting-extrusion, J. Alloys Compd., 828 (2020), 154454, doi: 10.1016/j.jallcom.2020.154454
[27] Y.F. Wang, F. Zhan, Y.T. Wang, Y.B. Duan, K.J. Wang, W.J. Zhang, J. Hu, Effect of Zn content on the microstructure and mechanical properties of Mg-Gd-Y-Zr alloys, Mater. Sci. Eng., A, 745 (2019), 149-158, doi: 10.1016/j.msea.2018.12.088
[28] W.J. Shi, Z.M. Zhang, M. Meng, Y.B. Yang, Effects of homogenization treatment on microstructure and elongation of the Mg-13Gd-4Y-2Zn-0.6Zr alloy, Mater. Res. Express, 5 (2018), 016514, doi: 10.1088/2053-1591/aaa309
Published
2022-04-06
How to Cite
1.
Xue Y, Wang Z, Jia L, Zheng J, Zhang Z, Yu J, Zhao X. EFFECT OF COOLING RATE ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SOLUTION-TREATED Mg-9Gd-4Y-2Zn-0.5Zr ALLOY. MatTech [Internet]. 2022Apr.6 [cited 2025Feb.11];56(2):201–208. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/317

Most read articles by the same author(s)