DETERMINING THE THERMAL ENERGY REQUIRED TO HEAT A BIOGAS PLANT FERMENTER
Abstract
The paper presents a procedure for determining the optimal amount of thermal energy for the profitable operation of a biogas plant. The temperature at which anaerobic fermentation takes place shortens the time of fermentation and biogas production, but also the provision of higher temperatures requires a certain amount of thermal energy, whose consumption reduces the energy effects of the biogas production system. In this paper the results of the average outdoor temperature and the temperature of inlet mass in fermenter are shown by months, the thermal energy is calculated so as the heat losses of primary and secondary fermenter, and the total required thermal energy to heat the fermenter by months is determined. The required thermal energy for heating the fermenter is presented in percentages, on average 16 % in relation to the total produced thermal energy. Careful analysis determined that the temperature for most profitable anaerobic fermentation process (mesophilic temperature is 40.5 °C), so that the fermentation rate would be optimal with the use of minimum amount of thermal energy to heat the fermenter.
References
1. Häring, G., Sonnleitner, M., Bär, K., Brown, N., Zörner, W. Demonstration of Controllable Electricity Production via Biogas Plants Chemical Engineering and Technology, 40 (2017), 2, 298-305, doi: 10.1002/ceat.201600195
2. Akbulut, A., Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdaĝidotless case study, Energy, 44 (2012) 1, 381-390, doi:
10.1016/j.energy.2012.06.017
3. Rosén, T., Ödlund, L., System perspective on biogas use for transport and electricity production, Energies, 12(2019) 21, 122-141, doi: 10.3390/en12214159
4. Scholwin, F., Nelles, M., Energy flows in biogas plants: Analysis and implications for plant design, The Biogas Handbook: Science, Production and Applications, (2013), 212-227,
doi:10.1533/9780857097415.2.212
5. Markou, G., Brulé, M., Balafoutis, A., (...), Georgakakis, D., Papadakis, G. , Biogas production from energy crops in northern Greece: economics of electricity generation associated with heat recovery in a greenhouse, Clean Technologies and Environmental Policy, 19 (2017) 4, 1147-1167, doi: 10.1007/s10098-016-1314-9
6. Milani, M., Montorsi, L., Stefani, M., An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment, Waste Management and Research, 32 (2014) 7, 614-625, doi:10.1177/0734242X14538307
7. Methling, T., Armbrust, N., Haitz, T., (...), Riedel, U., Scheffknecht, G., Power generation based on biomass by combined fermentation and gasification - A new concept derived from experiments and modelling, Bioresource Technology, 169 (2014) 510-517, doi: 10.1016/j.biortech.2014.07.036
8. Lobato, L.C.S., Chernicharo, C.A.L., Pujatti, F.J.P., (...), Melo, G.C.B., Recio, A.A.R., Use of biogas for cogeneration of heat and electricity for local application: Performance evaluation of an engine power generator and a sludge thermal dryer Water Science and Technology, 67 (2013) 1, 159-167, doi: 10.2166/wst.2012.549
9. Huopana, T., Song, H., Kolehmainen, M., Niska, H. , A regional model for sustainable biogas electricity production: A case study from a Finnish province, Applied Energy, 102 (2013) 676-686, doi: 10.1016/j.apenergy.2012.08.018
10.Prakash, M., Sarkar, A., Sarkar, J., Mondal, S.S., Chakraborty, J.P. . Proposal and design of a new biomass based syngas production system integrated with combined heat and power generation, Energy, 133 (2017) 986-997, doi:10.1016/j.energy.2017.05.161
11. ALDER, M.A., Use of Bio‐gas for power Generation, Water and Environment Journal, 1(1987) 3, 271-277, doi: 10.1111/j.1747-6593.1987.tb01226.x
12.Markou, G., Brulé, M., Balafoutis, A., (...), Georgakakis, D., Papadakis, G., Biogas production from energy crops in northern Greece: economics of electricity generation associated with heat recovery in a greenhouse, Clean Technologies and Environmental Policy, 19 (2017) 4, 1147-1167, doi: 10.1007/s10098-016-1314-9.
13.Häring, G., Sonnleitner, M., Bär, K., Brown, N., Zörner, W., Demonstration of Controllable Electricity Production via Biogas Plants, Chemical Engineering and Technology, 40 (2017) 2, 298-305, doi: 10.1002/ceat.201600195
14.Manganelli, B., Economic feasibility of a biogas cogeneration plant fueled with biogas from animal waste, Advanced Materials Research 864-867 (2014) 451-455,
doi: 10.4028/www.scientific.net/AMR.864-867.451
15.Nayal, F.S., Mammadov, A., Ciliz, N., Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion, Journal of Environmental Management, 184 (2016) 389-399, doi: 10.1016/j.jenvman.2016.09.058
16.Scholwin, F., Nelles, M., Energy flows in biogas plants: Analysis and implications for plant design ( Book Chapter), The Biogas Handbook: Science, Production and Applications, (2013) 212-227, doi: 10.1533/9780857097415.2.212
17.Lantz, M.,The economic performance of combined heat and power from biogas produced from manure in Sweden - A comparison of different CHP technologies, Applied Energy, 98 (2012) 502-511, doi: 10.1016/j.apenergy.2012.04.015
18.Achinas, S., Martherus, D., Krooneman, J., Euverink, G.J.W., Preliminary assessment of a biogas-based power plant from organic waste in the North Netherlands, Energies, 12(2019) 21,122-140, doi: 10.3390/en12214034
19.Nayal, F.S., Mammadov, A., Ciliz, N., Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion, Journal of Environmental Management, 184 (2016) 389-399, doi: 10.1016/j.jenvman.2016.09.058
20.Manganelli, B., Economic feasibility of a biogas cogeneration plant fueled with biogas from animal waste, Advanced Materials Research 864-867, (2014) 451-455,
doi:10.4028/www.scientific.net/AMR.864-867.451
21.Monteiro, E., Mantha, V., Rouboa, A., Prospective application of farm cattle manure for bioenergy production in Portugal, Renewable Energy, 36 (2011) 2, 627-631,
doi: 10.1016/j.renene.2010.08.035
22.Monteiro, E., Mantha, V., Rouboa, A., Prospective application of farm cattle manure for bioenergy production in Portugal, Renewable Energy, 36 ( 2011) 2, 627-631,
doi:10.1016/j.renene.2010.08.035
23.Shi, H., Pei, X., Zhu, H., Li, Y., Energy efficiency analysis on a farm biogas CHP plant, American Society of Mechanical Engineers, Power Division (Publication) POWER, 2 (2011) 1, 461-466, doi: 978-079184460-1
24. Kaparaju, P., Rintala, J., Generation of heat and power from biogas for stationary applications: Boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells ( Book Chapter) The Biogas Handbook: Science, Production and Applications, (2013) 404-427, doi: 10.1533/9780857097415.3.404
25.Guan, T., Alvfors, P. , The economic performance of an integrated biogas plant and Proton Exchange Membrane Fuel Cell Combined Heat and Power system (PEMFC-CHP) in Sweden, ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2014 Collocated with the ASME 2014 8th International Conference on Energy Sustainability, doi: 10.1115/FuelCell2014-6713
26.Patania, F., Gagliano, A., Nocera, F., Galesi, A., Feasibility study of biogas in CHP plant for a pig farm, Renewable Energy and Power Quality Journal, 1 (2012) 10,271, pp. 196-201, doi: 10.24084/repqj10.271
27.Renda, R., Gigli, E., Cappelli, A., (...), Guerriero, E., Romagnoli, F., Economic Feasibility Study of a Small-scale Biogas Plant Using a Two-stage Process and a Fixed Bio-film Reactor for a Cost-efficient Production, 95 (2016) 385-392
28.Karellas, S., Boukis, I., Kontopoulos, G., Development of an investment decision tool for biogas production from agricultural waste Renewable and Sustainable Energy Reviews, 14 (2010) 4, 1273-1282, doi: 10.1016/j.rser.2009.12.002
29.Akbulut, A., Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdaĝidotless case study, Energy, 44( 2012) 1, 381-390
doi: 10.1016/j.energy.2012.06.017
30.Huopana, T., Song, H., Kolehmainen, M., Niska, H., A regional model for sustainable biogas electricity production: A case study from a Finnish province, Applied Energy, 102 (2013) 676-686, 10.1016/j.apenergy.2012.08.018