TREATING WASTE SLUDGE FROM WATER-PURIFICATION PLANTS WITH THE GEOPOLYMERIZATION METHOD

  • Do Quang Minh Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
  • Thai Tien Dat Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
  • Nguyen Hoc Thang Ho Chi Minh City University of Food Industry – HUFI, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
  • Kieu Do Trung Kien Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
  • Pham Trung Kien Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
  • Huynh Ngoc Minh Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
  • Nguyen Vu Uyen Nhi Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
Keywords: waste sludge, water, purification plants, fly ash, water glass, alkali-activated solution (AAS), geopolymer, microwave oven, dryer, curing

Abstract

Treatment of the sludge from water-purification plants is becoming more and more urgent due to the inability to increase its storage area. To avoid CO2 emissions, the use of non-Portland cement binders is recommended. The application of geopolymerization of waste sludge (WS) from water-purification plants is a novel solution. Curing conditions including high temperature, pressure or microwaves enhance the formation of geopolymer bonds. This paper presents the results of a research on the treatment of the WS of the Thu Duc water-purification plant (Vietnam) with the geopolymerization method. Solid phases were prepared by mixing the WS and fly ash (FA). The FA proportions of the solid phases were (10, 40, 70) w/%. The alkali-activated solution (AAS) was a mixture of a 40 w/% NaOH 6M solution and 60 w/% water glass (WG: Na2O.nSiO2 with n = 1.75 and volumetric density r  = 1.40 kg/L). The geopolymer materials were mixtures containing an 80 w/% solid phase and a 20 w/% liquid phase of the AAS. Geopolymer samples were formed in a cylindrical steel mold with a diameter of 10 mm at a high pressure. The samples were cured in a 112 W microwave oven for 30 s or in a dryer at 110 °C for 24 h. The compressive strength and volumetric density of both sample groups were determined and compared to each other. The formation of geopolymer bonds was investigated using XRD, FTIR and SEM.

References

1 J. A. Ippolito, K. A. Barbarick, H. A. Elliott, Drinking Water Treatment Residuals: A Review of Recent Uses, J. Environ. Qual., 40 (2011) 1, 1–12, doi:10.2134/jeq2010.0242
2 K. E. Havens, Acid and aluminum effects on the survival of littoral macro-invertebrates during acute bioassays, Environ. Pollut., 80 (1993) 1, 95–100, doi:10.1016/0269-7491(93)90016-H
3 S. D. C. Gomes, J. L. Zhou, W. Li, G. Long, Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review, J. Resources, Conservation and Recycling, 145 (2019), 148–159, doi.org/10.1016/j.resconrec.2019.02.032
4 K. C. Makris, D. Sarkar, R. Datta, Aluminum-based drinking-water treatment residuals: A novel sorbent for perchlorate removal, Environ. Pollut., 140 (2006) 1, 9–12, doi:10.1016/j.envpol.2005.08.075
5 L. P. Rodriguesa, J. N. F. Holandaa, Recycling of Water Treatment Plant Waste for Production of Soil Cement Brick, Proc. Mat. Sci., 8 (2015) 1, 197–202, doi:10.1016/j.mspro.2015.04.064
6 D. A. Fungaro, M. V. da Silva, Utilization of Water Treatment Plant Sludge and Coal Fly Ash in Brick Manufacturing, Am. J. Environ. Sci., 2 (2014) 5, 83–88, doi:10.12691/env-2-5-2
7 K. Komnitsas, D. Zaharaki, Geopolymerisation: a review and prospects for the minerals industry, Miner. Eng., 20 (2007) 14, 1261–1277, doi:10.1016/j.mineng.2007.07.011
8 T. Ahmad, K. Ahmad, M. Alam, Characterization of Water Treatment Plant’s Sludge and its Safe Disposal Option, Procedia Environ. Sci., 35 (2016) 1, 950–955, doi:10.1016/j.proenv.2016.07.088
9 N. Ye, J. Yang, X. Ke, J. Zhu, Y. Li, C. Xiang, H. Wang, L. Li, B. Xiao, Synthesis and characterization of geopolymer from Bayer red mud with thermal pretreatment, J. Am. Ceram. Soc., 97 (2014) 5, 1652–1660, doi:10.1111/jace.12840
10 T. Luukkonen, A. Heponiemi, H. Runtti, J. Pesonen, J. Yliniemi, U. Lassi, Application of alkali-activated materials for water and wastewater treatment: a review, Rev. Environ. Sci. Biotechnol, 18 (2019) 1, 271–297, doi:10.1007/s11157-019-09494-0
11 N. Yamaguchi, K. Ikeda, Preparation of geopolymeric materials from sewage sludge slag with special emphasis to the matrix compositions, J. Ceram. Soc. Jpn., 118 (2010) 1374, 107–112, doi:10.2109/jcersj2.118.107
12 V. Q. Le, H. T. Nguyen, T. H. Bui, V. T. H. Q. Pham, M. Q. Do, Leaching Behavior and Immobilization of Heavy Metals in Geopolymer Synthesized from Red Mud and Fly Ash, Key Eng. Mater., 777 (2018) 1, 518–522, doi:10.4028/www.scientific.net/ KEM.777.518
13 D. B. Istuque, L. Reig, J. C. B. Moraes, J. L. Akasaki, M. V. Borrachero, L. Soriano, J. Payá J. A. Malmonge, M. M.Tashima, Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash (SSA), Mater. Lett., 180 (2016) 1, 192–195, doi:10.1016/j.matlet.2016.05.137
14 N. Waijarean, S. Asavapisit, K. Sombatsompop, K. J. D. MacKenzie, The Effect of the Si/Al Ratio on the Properties of Water Treatment Residue (WTR)-Based Geopolymers, Key Eng. Mater., 608 (2014) 1, 289–294, doi:10.4028/www.scientific.net/KEM.608.289
15 N. H. Thang, N. N. Hoa, P. V. T. Quyen, N. N. K. Tuyen, T. V. T Anh, P. T. Kien, Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash, AIP Conf. Proc., 1954 (2018) 1, 040009, doi:10.1063/1.5033409
16 X. Guo, H. Shi, W. Dick, Use of Heat-Treated Water Treatment Residuals in Fly Ash-Based Geopolymers, J. Am. Ceram. Soc., 93 (2010) 1, 272–278, doi:10.1111/j.1551-2916.2009.03331.x
17 K. Zimmerman, Microwave as an emerging technology for the treatment of biohazardous waste: A mini-review, Waste Manage. Res., 35 (2017) 5, 471–479, doi:10.1177/0734242X16684385
18 R. Prommasa, T. Rungsakthaweekulb, Effect of Microwave Curing Conditions on High Strength Concrete Properties, Energy Proced., 56 (2014) 1, 26–34, doi:10.1016/j.egypro.2014.07.128
19 H. T. Nguyen, Evaluation on Formation of Aluminosilicate Network in Ternary-Blended Geopolymer Using Infrared Spectroscopy, Sol. St. Phen., 296 (2019) 1, 99–104, doi:10.4028/www.scientific.net/SSP.296.99
20 J. Wang, J. Song, J. Lu, X. Zhao, Comparison of Three Aluminum Coagulants for Phosphorus Removal, J. Water Resour. Prot., 06 (2014) 10, 902–908, doi:10.4236/jwarp.2014.610085
21 J. A. Ippolito, K. A. Barbarick, D. M. Heil, J. P. Chandler, E. F. Redente, Phosphorus Retention Mechanisms of a Water Treatment Residual, J. Environ. Qual., 32 (2003) 5, 1857, doi:10.2134/ jeq2003.1857
22 E. Galan, P. Aparicio, A. Miras, K. Michailidis, A. Tsirambides, Technical properties of compounded kaolin sample from Griva (Macedonia, Greece), Appl. Clay Sci., 10 (1996) 6, 477–490, doi:10.1016/0169-1317(95)00041-0
23 B. J. Saikia, G. Parthasarathy, Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India, J. Mod. Phys., 01 (2010) 4, 206–210, doi:10.4236/jmp.2010.14031
24 C. S. Ferreira, P. L. Santos, J. A. Bonacin, R. R. Passos, L. A. Pocrifka, Rice Husk Reuse in the Preparation of SnO2/SiO2 Nanocomposite, Mater. Res., 18 (2015) 3, 639–643, doi:10.1590/1516-1439.009015
25 D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods – A review, Renew. Sustain. Energy Rev., 12 (2008) 1, 116–140, doi:10.1016/j.rser.2006.05.014
26 H. T. Nguyen, Synthesis and Characteristics of Inorganic Polymer Materials Geopolymerized from Ash of Brickyard, Mater. Sci. Forum, 961 (2019) 1, 45–50, doi:10.4028/www.scientific.net/MSF. 961.45
27 P. Yu, R. J. Kirkpatrick, B. Poe, P. F. McMillan, X. Cong, Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid- and Far-Infrared Spectroscopy, J. Am. Ceram. Soc., 82 (2004) 3, 742–748, doi:10.1111/j.1151-2916.1999.tb01826.x
28 G. B. Cai, S. F. Chen, L. Liu, J. Jiang, H. B. Yao, A. W. Xu, S. H. Yu, 1,3-Diamino-2-hydroxypropane-N, N, N’, N’-tetraacetic acid stabilized amorphous calcium carbonate: nucleation, transformation and crystal growth, Cryst. Enf. Comm., 12 (2010) 1, 234–241, doi:10.1039/b911426m
29 M. Wdowin, M. Franus, R. Panek, L. Badura, W. Franus, The conversion technology of fly ash into zeolites, Clean Techn. Environ. Policy, 16 (2014) 1, 1217–1223, doi:10.1007/s10098-015-0910-4
30 J. Davidovits, Geopolymer: Inogranic Polymeric New Materials, J. Therm. Anal. Caloim., 37 (1991) 8, 1633–1656, doi:10.1007/ BF01912193
Published
2021-09-30
How to Cite
1.
Minh DQ, Dat TT, Thang NH, Kien KDT, Kien PT, Minh HN, Nhi NVU. TREATING WASTE SLUDGE FROM WATER-PURIFICATION PLANTS WITH THE GEOPOLYMERIZATION METHOD. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):701–707. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/281