PREPARATION OF ATO NANOPOWDERS WITH Co-PRECIPITATION AND THEIR LASER-REFLECTION PROPERTIES

  • Jing Zhang Wuxi Vocational Institute of Arts & Technology, Yixing 214209, China
Keywords: antimony tin oxide, laser reflectivity, preparation technology

Abstract

Antimony tin oxide (ATO) nanoparticles were prepared using co-precipitation with tin chloride and antimony chloride as the main raw materials. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and ultraviolet-visible spectrophotometry were used to characterize the crystal structure, morphology and laser reflectivity. The effects of the pH value, co-precipitation reaction temperature, calcination temperature and calcination time on the laser reflectivity of ATO nanoparticles were studied. The results show that, compared with the undoped SnO2 powder, the reflectivity of a Sb-doped ATO powder at a laser wavelength of 1.06 µm is significantly reduced, and with an increase in the Sb doping, the reflectivity of the ATO powder at 1.06 µm first decreases and then increases. When the Sb/Sn molar ratio is 2/10, the reflectivity decreases to the lowest point, which is caused by the high concentration of Sb5+. ATO powders (Sb/Sn = 2/10) prepared at a titration-end-point pH of 2, co-precipitation temperature of 70 °C, calcination temperature of 800 °C and calcination time of 6 h have the lowest laser reflectivity at the laser wavelength of 1.06 µm, which is less than 0.02 %.

References

1 X. L. Chen, C. H. Tian, T. P. Chen, Composite grating structure for laser and infrared compatible stealth with high visible transmittance, Optik, 183 (2019), 863–868, doi:10.1016/j.ijleo.2019.03.007
2 V. A. Saveleva, L. Wang, O. Kasian, M. Batuk, J. Hadermann, J.-J. Gallet, F. Bournel, N. Alonso-Vante, G. Ozouf, C. Beauger, K. J. J. Mayrhofer, S. Cherevko, A. S. Gago, K. A. Friedrich, S. Zafeiratos, E. R. Savinova, Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers, ACS Catalysis, 10 (2020) 4, 2508–2516, doi:10.1021/ acscatal.9b04449
3 Y. S. Qin, M. J. Zhang, Y. Guan, X. G. Huang, Laser absorption and infrared stealth properties of Al/ATO composites, Ceramics International, 45 (2019) 11, 14312–14315, doi:10.1016/j.ceramint.2019. 04.144
4 Z. Qiu, Z. F. Xiao, L. K. Gao, J. Li, H. G. Wang, Y. G. Wang, Y. J. Xie, Transparent wood bearing a shielding effect to infrared heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles, Composites Science Technology, 172 (2019), 43–48, doi:10.1016/j.compscitech.2019.01.005
5 S. Sreekumar, A. Joseph, C. S. Sujith Kumar, S. Thomas, Investigation on influence of antimony tin oxide/silver nanofluid on direct absorption parabolic solar collector, Journal of Cleaner Production, 249 (2020), 119378, doi:10.1016/j.jclepro.2019.119378
6 G. H. Fan, Z. Y. Wang, K. Sun, Y. Liu, R. H. Fan, Doping-dependent negative dielectric permittivity realized in mono-phase antimony tin oxide ceramics, Journal of Materials Chemistry C, 8 (2020), 11610–11617, doi:10.1039/D0TC02266G
7 B. Khorshidi, S. A. Hosseini, G. Ma, M. McGregor, M. Sadrzadeh, Novel nanocomposite polyethersulfone-antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties, Polymer, 163 (2019), 48–56, doi:10.1016/j.polymer.2018.12.058
8 J. Zhang, Y. D. Sun, J. S. Xu, Fabrication of antimony doped tin oxide nanopowders as an advanced electrode material for super¬capacitors, Micro & Nano Letters, 14 (2019) 3, 254–258, doi:10.1049/mnl.2018.5212
9 J. Zhang, L. X. Wang, Q. T. Zhang, Influence of Sb content on electromagnetic properties of ATO/ferrite composites synthesized by co-precipitation method, Journal of Magnetism and Magnetic Materials, 390 (2015), 107–113, doi:10.1016/j.jmmm.2015.04.079
10 J. Zhang, L. X. Wang, M. P. Liang, Q. T. Zhang, Effects of Sb content on structure and laser reflection performance of ATO nanomaterials, Transactions of Nonferrous Metals Society of China, 24 (2014) 1, 131–135, doi:10.1016/S1003-6326(14)63038-7
11 N. Haddad, Z. Ben Ayadi, K. Djessas, Synthesis and characterization of antimony doped tin oxide aerogel nanoparticles using a facile sol–gel method, Journal of Materials Science: Materials in Electronics, 29 (2018) 1, 721–729, doi:10.1007/s10854-017-7965-4
12 A. A. Yadav, Influence of film thickness on structural, optical, and electrical properties of spray deposited antimony doped SnO2 thin films, Thin Solid Films, 591 (2015), 18–24, doi:10.1016/j.tsf.2015. 08.013
13 C. L. Wang, D. Wang, R. Q. Yang, H. F. Wang, Preparation and electrical properties of wollastonite coated with antimony-doped tin oxide nanoparticles, Powder Technology, 342 (2019), 397–403, doi:10.1016/j.powtec.2018.09.092
14 S. D. Ponja, B. A. D. Williamson, S. Sathasivam, D. O. Scanlon, I. P. Parkin, C. J. Carmalt, Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition, Journal of Materials Chemistry C, 6 (2018), 7257–7266, doi:10.1039/C8TC01929K
15 T. Krishnakumar, R. Jayaprakash, N. Pinna, A. R. Phani, M. Passa¬cantando, S. Santucci, Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles, Journal of Physics and Chemistry of Solids, 70 (2019) 6, 993–999, doi:10.1016/ j.jpcs.2009.05.013
Published
2021-09-30
How to Cite
1.
Zhang J. PREPARATION OF ATO NANOPOWDERS WITH Co-PRECIPITATION AND THEIR LASER-REFLECTION PROPERTIES. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.27];55(5):667–672. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/280