STUDY OF THE SUITABILITY OF VARIOUS TYPES OF CASTING MATERIALS FOR THE MANUFACTURE OF A SHIP ENGINE

  • Juan José Galán Department of Naval and Industrial Engineering, ETSI Caminos, Canales y Puertos, University of A Coruña, 15403 Ferrol, Spain
  • Nuria Varela-Fernández Department of Naval and Industrial Engineering, ETSI Caminos, Canales y Puertos, University of A Coruña, 15403 Ferrol, Spain
  • Manuel Ángel Graña-López Department of Industrial Engineering, Escuela Universitaria Politécnica, University of A Coruña, 15405 Ferrol, Spain
  • Almudena Filgueira-Vizoso Department of Chemistry, Escuela Politécnica Superior, University of A Coruña, 15403 Ferrol, Spain
  • Ana García-Diez Department of Naval and Industrial Engineer, Escuela Politécnica Superior, University of A Coruña, 15403 Ferrol, Spain
Keywords: spheroidal cast iron, grey cast iron, mechanical properties, engine boat

Abstract

The objective of this work was to study the suitability of three types of cast iron for the manufacture of a ship engine: EN-GJS-500-7U for the manufacture of the engine block, EN-GJS-400-15U for the cylinder head and EN-GJL-200 for the liner. Tensile tests were carried out to obtain the ultimate tensile strength (UTS) of each material. The results for the UTS were: 460 MPa for EN-GJS-500-7U, 390 MPa for EN-GJS-400-15U and 170 MPa for EN-GJL-200. Likewise, Brinell-hardness measurements were carried out and the elements present in the materials were determined with spectrometry. Finally, the size of graphite particles in each sample was determined.

References

1 M. W. Shin, G. H. Jang, J. H. Kim, H. Y. Kim, H. Jang, The Effect of Residual Stress on the Distortion of Grey Iron Brake Disks, J. Mater. Eng. Perform., 22 (2013), 1129–1135, doi:10.1007/s11665-¬012-0397-7
2 L. Collini, G. Nicoletto, R. Konecna, Microstructure and Mechanical Properties of Pearlitic Grey Cast Iron, Mater. Sci. Eng. A, 488 (2008) 1–2, 529–539, doi:10.1016/j.msea.2007.11.070
3 M. N. James, L. Wenfong, Fatigue Crack Growth in Austempered Ductile and Grey Cast Irons – Stress Ratio Effects in Air and Mine Water, Mater. Sci. Eng. A, 265 (1999) 1–2, 129–139, doi:10.1016/ S0921-5093(98)01140-X
4 M. Moonesan, F. Madah, Effect of alloying elements on thermal shock resistance of grey cast iron, J. Alloys Comp., 520 (2012), 226–231, doi:10.1016/j.jallcom.2012.01.027
5 F. Zieher, F. Langmayr, A. Jelatancev, K. Wieser, Thermal mechanical fatigue simulation of cast iron cylinder heads, SAE Technical Papers, 2005, doi:10.4271/2005-01-0796
6 T. J. Mackin, K. Noe, S. C. Ball, B. Bedell, D. Bim-Merle, M. Bingaman, D. Bomleny, G. Chemlir, D. Clayton, H. Evans, Thermal cracking in disc brakes, Eng. Fail. Anal., 9 (2002) 1, 63–76, doi:10.1016/S1350-6307(00)00037-6
7 D. Taylor, J. Li, A. Giese, Short Fatigue Crack Growth in Cast Iron Described Using P-A Curves, Int. J. Fatigue, 17 (1995) 3, 201–206, doi:10.1016/0142-1123(95)98940-5
8 D. Taylor, M. Hughest, D. Allen, Notch Fatigue Behaviour in Cast Irons Explained Using a Fracture Mechanics Approach, Int. J. Fatigue, 18 (1996) 7, 439–445, doi:10.1016/0142-1123(96)00018-7
9 A. N. Damir, A. Elkhatib, G. Nassef, Prediction of Fatigue Life Using Modal Analysis for Grey and Ductile Cast Iron, Int. J. Fatigue, 29 (2007) 3, 499–507, doi:10.1016/j.ijfatigue.2006.05.004
10 P. Baicchi, L. Collini, E. Riva, A Methodology for the Fatigue Design of Notched Castings in Grey Cast Iron, Eng. Fract. Mech, 74 (2007) 4, 539–548, doi:10.1016/j.engfracmech.2006.04.018
11 D. D. Goettsch, J. A. Dantzig, Modeling Microstructure Development in Grey Cast Irons, Metall. Mater. Trans. A, 25 (1994), 1063–1079, doi:10.1007/BF02652281
12 D. J. Weinacht, D. F. Socie, Fatigue Damage Accumulation in Grey Cast Iron, Int. J. Fatigue, 9 (1987) 2, 79–86, doi:10.1016/0142-¬1123(87)90048-X
13 S. H. Choo, S. Lee, S. J. Kwon, Surface Hardening of a Grey Cast Iron Used for a Diesel Engine Cylinder Block Using High-Energy Electron Beam Irradiation, Metall. Mater. Trans. A, 30 (1999), 1211–1221, doi:10.1007/s11661-999-0271-x
14 H. Mohebbi, D. A. Jesson, M. J. Mulheron, P. A. Smith, The Fracture and Fatigue Properties of Cast Irons Used for Trunk Mains in the Water Industry, Mater. Sci. Eng. A, 527 (2010) 21–22, 5915–5923, doi:10.1016/j.msea.2010.05.071
15 J. H. Bulloch, Near Threshold Fatigue Behaviour of Flake Graphite Cast Irons Microstructures, Theor. Appl. Fract. Mech., 24 (1995) 1, 65–78, doi:10.1016/0167-8442(95)00032-A
16 E. Hornbogen, Fracture toughness and fatigue crack growth of grey cast irons, Journal of Materials Science, 20 (1985), 3897–3905, doi:10.1007/BF00552378
17 M. Javidiani, D. Larouche, Application of cast Al-Si alloys in internal combustion components, Int. Mater. Rev., 59 (2014) 3, 132–158, doi:10.1179/1743280413Y.0000000027
18 UNE-EN-ISO 7500:2006. Metallic materials – Verification of static uniaxial testing machines – Part 1: Tension/compression testing machines – Verification and calibration of the force-measuring system (ISO 7500-1:2004)
19 UNE-EN 1561:2012. Founding – Grey cast irons
20 UNE-EN 1563:2012. Spheroidal graphite cast irons
21 UNE-EN 10002-1: 2015. Metallic materials – Tensile testing – Part 1: Method of test at ambient temperature
22 UNE-EN ISO 6506-1: 2015. Metallic materials – Brinell hardness test – Part 1: Test method (ISO 6506-1:2014)
23 UNE-EN ISO 6506-2: 2015. Metallic materials – Brinell hardness test – Part 2: Verification and calibration of testing machines (ISO 6506-2:2014)
24 M. Hafiz, Mechanical properties of SG-iron with different matrix structure, Journal of Materials Science, 36 (2001), 1293–1300, doi:10.1023/A:1004866817049
25 H. T. Angus, Cast Iron Physical and Engineering Properties, Butterworths, London, Boston 1976
26 G. F. Ruff, J. F. Wallace, Effects of solidification structures on the tensile properties of grey iron, AFS Trans., 56B (1977), 179–202
27 C. Bates, Alloy element effect on lamellar iron properties: part II, AFS Trans., 94 (1986), 889–905
28 O. Liesenberg, J. Ohser, Die beziehung zwischen der zugfestigkeit und der graphitausbildung von gusseisen mit lamellengraphit, Giessereitechnik, 29 (1983), 106–108
29 H. Nakae, H. Shin, Effect of graphite morphology on tensile properties of flake graphite cast iron, Mater. Trans., 42 (2001) 7, 1428–1434, doi:10.2320/matertrans.42.1428
30 T. H. Willidal, W. Bauer, P. Schumacher, Stress/strain behavior and fatigue limit of grey cast iron, Mater. Sci. Eng. A, 413–414 (2005), 578–582, doi:10.1016/j.msea.2005.08.200
31 V. Fourlakidis, L. V. Diaconu, A. Diószegi, Effects of Carbon Content on the Ultimate Tensile Strength in Lamellar Cast Iron, Solidification and Gravity V, Mater. Sci. Forum, 649 (2010), 511–516, doi:10.4028/www.scientific.net/MSF.649.511
32 T. J. Baker, The fracture resistance of the flake graphite cast iron, Mater. Eng. Appl., 1 (1978) 1, 13–18, doi:10.1016/0141-¬5530(78) 90003-1
33 UNE-EN 945-1:2012. Microstructure of cast irons – Part 1: Graphite classification by visual analysis (ISO 945-1:2008)
Published
2021-09-30
How to Cite
1.
Galán JJ, Varela-FernándezN, Graña-LópezM Ángel, Filgueira-VizosoA, García-DiezA. STUDY OF THE SUITABILITY OF VARIOUS TYPES OF CASTING MATERIALS FOR THE MANUFACTURE OF A SHIP ENGINE. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):649–654. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/278