• Jelena Jakić Faculty of Chemistry and Technology, Ruđera Boškovića 35, 21000 Split, Croatia
  • Miroslav Labor Faculty of Chemistry and Technology, Ruđera Boškovića 35, 21000 Split, Croatia
  • Vanja Martinac Faculty of Chemistry and Technology, Ruđera Boškovića 35, 21000 Split, Croatia
  • Martina Perić Faculty of Chemistry and Technology, Ruđera Boškovića 35, 21000 Split, Croatia
Keywords: seawater, nano-TiO2, micro-TiO2, porosity, density


In order to improve the properties of sintered MgO (80 % precipitation) obtained from seawater, an investigation was carried out with (0, 1, 2) w/% of nano-TiO2 and micro-TiO2 additions during sintering at a temperature of 1500 °C (1 h and 2 h). The effects of the TiO2 addition on its microstructural properties, density, porosity and chemical composition after sintering were observed. The SEM/EDS analysis confirmed the formation of a homogeneous microstructure composed mainly of periclase grains and well-distributed secondary phases. CaTiO3 and MgTiO4 are predominantly located at the inter- and intra-periclase grain boundary surfaces during cooling. The microstructure of the MgO samples with the addition of nano-TiO2 become more compact, having a positive impact on the porosity and density of the samples. The addition of 1 w/% of nTiO2 represents the optimal amount for the improvement of the properties of the MgO samples (80 % precipitation) obtained from seawater.


1 R. H. R. Castro, K. Benthem, Sintering, Mechanisms of Convention Nanodensification and Field Assisted Processes, Springer, New York 2013
2 T. Lucion, P. H. Duvigneaud, A. Laudet, J. F. Stenger, E. Gueguen, Effect of TiO2 Additions on the Densification of MgO and MgO-CaO Mixtures, Key Engineering Materials, 268 (2004), 209–213, doi:10.4028/
3 Q. Z. Huang, G. M. Lu, Z. Sun, X. F. Song, J. G. Yu, Effect of TiO2 on sintering and grain growth kinetics of MgO from MgCl2 ·6H2O, Metallurgical and Materials Transactions B, 44 (2013), 344–353, doi:10.1007/s11663-012-9785-5
4 V. Martinac, M. Labor, N. Petric, Effect of TiO2, SiO2 and Al2O3 on Properties of Sintered Magnesium Oxide from Sea Water, Materials Chemistry and Physics, 46 (1996), 23–30, doi:10.1016/0254-¬0584(96)80125-8
5 V. Martinac, Effect of TiO2 Addition on the Sintering Process of Magnesium Oxide from Seawater, In: A. Lakshmanan, ed., Sintering of Ceramics – New Emerging Techniques, InTech Europe, Rijeka 2012, 309–322, doi:10.5772/33748
6 A. Kan, T. Moriyama, S. Takahashi, H. Ogawa, Low-Temperature Sintering and Microwave Dielectric Properties of MgO Ceramic with LiF Addition, Journal of Applied Physics, 50 (2011), 09NF02-1-5, doi:10.7567/JJAP.50.09NF02
7 S. Kobel, D. Schneider, C. C. Schüler, L. J. Gauckler, Sintering of vanadium-doped magnesium oxide, Journal of the European Ceramic Society, 24 (2004), 2267–2274, doi:10.1016/j.jeurceramsoc.2003. 07.009
8 B. Han, Y. Li, C. Guo, N. Li, F. Chen, Sintering of MgO-based refractories with added WO3, Ceramics International, 33 (2007), 1563–1567, doi:10.1016/j.ceramint.2006.07.014
9 K. Das, S. Mukherjee, P. K. Maiti, P. G. Pal, Microstructural and densification study of natural Indian magnesite in presence of zirconia additive, Bulletin of Materials Science, 33 (2010), 439–444, doi:10.1007/s12034-010-0067-z
10 Y. Xie, Z. Chen, Y. Wu, M. Yang, L. Weid, H. Hu, Activated sintering of activated carbon-doped magnesia, Ceramics International, 40 (2014), 16543–16547, doi:10.1016/j.ceramint.2014.08.008
11 M. Chen, C. Lu, J. Yu, Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2, Journal of the European Ceramic Society, 27 (2007), 4633–4638, doi:10.1016/j.jeurceramsoc. 2007.04.001
12 H. R. Zargar, C. Oprea, G. Oprea, T. Troczynski, The effect of nano-Cr2O3 on solid-solution assisted sintering of MgO refractories, Ceramics International, 38 (2012), 6235–6241, doi:10.1016/ j.ceramint.2012.04.077
13 S. G. Kahrizsangi, A. Shahraki, M. Farooghi, Effect of Nano-TiO2 Additions on the Densification and Properties of Magnesite-Dolomite Ceramic Composites, Iranian Journal of Science and Technology, Transactions A, (2016), doi:10.1007/s40995-016-0143-3
14 K. Grasshoff, K. Kremling, M. Ehrhardt, Methods of seawater analysis, Wiley-VCH, Weinheim 1999
15 J. Jakić, M. Labor, V. Martinac, Characterization of dolomitic lime as the base reagent for precipitation of Mg(OH)2 from seawater, Chemical and Biochemical Engineering Quarterly, 30 (2016), 373–379, doi:10.15255/CABEQ.2015.2325
16 N. Petric, V. Martinac, M. Labor, O. Jurin, Effect of 818A and 827N flocculants on seawater magnesia process, KZLTET, 33 (1999), 473–478
17 HRN B. D8. 302, B. D8. 312, B. D8. 313: 1984
18 F. Culkin, The major constituents of seawater, In: J. P. Riley, G. Skirrow, eds., Chemical Oceanography, 2nd ed., Academic Press, London 1975, 136–151
19 J. Jakic, M. Labor, V. Martinac, The relationship between phase composition and conditions of sintering seawater derived magnesium oxide, Sadhana, 43 (2018), 119, doi:10.1007/s12046-018-0873-3
20 M. Labor, V. Martinac, N. Petric, B2O3 content in the sintered magnesium oxide obtained from seawater, Indian Journal of Chemical Technology, 20 (2013), 276–281
21 N. Heasman, New developments in seawater magnesia, Gas Wärme International, 28 (1979), 392–397
22 P. Palmero, Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods, Nanomaterials, 5 (2015), 656–696, doi:10.3390/nano5020656
How to Cite
Jakić J, Labor M, Martinac V, Perić M. SINTERING BEHAVIOUR OF MAGNESIUM OXIDE OBTAINED FROM SEAWATER DOPED WITH NANO-TiO2. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):629–635. Available from: