• Sina Zinatlou Ajabshir Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
  • Mohsen Kazeminezhad Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
  • Amir Hossein Kokabi Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
Keywords: aluminum, friction-stir welding, microstructure, mechanical properties, cold work, post rolling


One of the friction-stir welding (FSW) limitations is joining thin sheets in sheet-metal manufacturing. To solve this limitation, thicker sheets can be welded with FSW and then rolled to a thinner thickness. This can improve the mechanical properties and save the weld zone soundly. In this work, 3-mm aluminum sheets were joined with FSW. The microstructure and mechanical properties of the samples were assessed at various rotational speeds (w) and travel speeds (v). Then, the welded samples were cold worked (CW) by rolling them at different percentages so that the samples were 2 mm and 1 mm thick. The effects of welding and post rolling on the mechanical properties and a failure analysis were deliberated. It was shown that welding reduces the transverse ultimate tensile strength (UTS) of FSWed samples by up to 29 % compared to the UTS of the base metal (BM), while rolling FSWed samples increased the UTS of the cold-worked FSWed samples by up to 94.7 % in comparison to the UTS of FSWed samples. Also, during the tensile test of the specimens FSWed at a lower travel speed, a fracture occurred at the stir zone (SZ)/thermo-mechanically affected zone (TMAZ) interface, on the advancing part; however, at a higher travel speed, it occurred at the interface of the heat-affected zone (HAZ) and TMAZ, on the retreating part. Moreover, during the tensile test of the cold-worked FSWed samples, the failure took place at the HAZ and the interface of the SZ and TMAZ, respectively. The UTS was risen by increasing the cold work. The UTS of a specimen FSWed at 50 mm/min and 1200 min–1 went up from 76 MPa to 124 MPa due to 33-% cold work and to 148 MPa due to 66-% cold work; meanwhile, the fracture occurred at the SZ/TMAZ interface or TMAZ of most of the post-rolled FSWed samples.


1 W. M. Thomas, Friction Stir Welding of Ferrous Materials; A Feasibility Study, Sci. Technol. Weld. Join., 4 (1999) 1, 1–11, doi:10.1179/136217199101538012
2 R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R: Reports, 50 (2005) 1–2, 1–78, doi:10.1016/j.mser. 2005.07.001
3 W. Thomas, E. Nicholas, Friction stir welding for the transportation industries, Mater. Des., 18 (1997) 4–6, 269–273, doi:10.1016/ S0261-¬3069(97)00062-9
4 J. H. Cho, D. E. Boyce, P. R. Dawson, Modeling strain hardening and texture evolution in friction stir welding of stainless steel, Mater. Sci. Eng. A-Structural Mater. Prop. Microstruct. Process., 398 (2005) 1–2, 146–163
5 Y.-M. Hwang, Z.-W. Kang, Y.-C. Chiou, H.-H. Hsu, Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys, Int. J. Mach. Tools Manuf., 48 (2008) 7–8, 778–787, doi:10.1016/j.ijmachtools.2007.12.003
6 C. Zhou, X. Yang, G. Luan, Investigation of microstructures and fatigue properties of friction stir welded Al-Mg alloy, Mater. Chem. Phys., 98 (2006) 2–3, 285–290, doi:10.1016/j.matchemphys. 2005.09.019
7 R. Nandan, T. Debroy, H. K. D. H. Bhadeshia, Recent advances in friction-stir welding – Process, weldment structure and properties, Prog. Mater. Sci., (2008), doi: doi:10.1016/j.pmatsci.2008.05.001
8 A. Scialpi, M. De Giorgi, L. A. C. De Filippis, R. Nobile, F. W. Panella, Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials, Mater. Des., 29 (2008) 5, 928–936, doi:10.1016/j.matdes.2007.04.006
9 D. R. Ivan Galvao, Carlos Leitao, Altino Loureiro, Friction Stir Welding of Very Thin Plates, Soldag. Insp. Sao Paulo, 17 (2012), 2–10, doi:10.1590/S0104-92242012000100002
10 A. Forcellese, F. Gabrielli, M. Simoncini, Mechanical properties and microstructure of joints in AZ31 thin sheets obtained by friction stir welding using “pin” and “pinless” tool configurations, Mater. Des., 34 (2012), 219–229, doi:10.1016/j.matdes.2011.08.001
11 M. Amiri, M. Kazeminezhad, A. H. Kokabi, Energy absorption of friction stir welded 1050 aluminum sheets through wedge tearing, Mater. Des., 93 (2016), 216–223, doi:10.1016/j.matdes.2015.12.163
12 B. Abnar, M. Kazeminezhad, A. H. Kokabi, Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003-H18 plates, Trans. Nonferrous Met. Soc. China, 25 (2015) 7, 2147–2155, doi: 10.1016/S1003-6326(15)63826-2
13 R. Xin, D. Liu, Z. Xu, B. Li, Q. Liu, Changes in texture and microstructure of friction stir welded Mg alloy during post-rolling and their effects on mechanical properties, Mater. Sci. Eng. A, 582 (2013), 178–187, doi:10.1016/j.msea.2013.06.005
14 F. Gabrielli, A. Forcellese, M. El Mehtedi, M. Simoncini, Mechanical Properties and Formability of Cold Rolled Friction Stir Welded Sheets in AA5754 for Automotive Applications, Procedia Eng., 183 (2017), 245–250, doi:10.1016/j.proeng.2017.04.030
15 N. F. M. Selamat, A. H. Baghdadi, Z. Sajuri, S. Junaidi, A. H. Kokabi, Rolling effect on dissimilar friction stir welded AA5083-AA6061 aluminium alloy joints, J. Adv. Manuf. Technol., 14 (2020)
16 Z. Sajuri, N. F. M. Selamat, A. H. Baghdadi, A. Rajabi, M. Z. Omar, A. H. Kokabi, J. Syarif, Cold-rolling strain hardening effect on the microstructure, serration-flow behaviour and dislocation density of friction stir welded AA5083, Metals (Basel), 10 (2020) 1, doi:10.3390/met10010070
17 Y. S. Sato, Y. Kurihara, S. H. C. Park, H. Kokawa, N. Tsuji, Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding, Scr. Mater., 50 (2004) 1, 57–60, doi:10.1016/ j.scriptamat.2003.09.037
18 Y. F. Sun, H. Fujii, N. Tsuji, Microstructure and mechanical properties of spot friction stir welded ultrafine grained 1050 Al and conventional grained 6061-T6 Al alloys, Mater. Sci. Eng. A, 585 (2013), 17–24, doi:10.1016/j.msea.2013.07.030
19 L. E. Murr, G. Liu, J. C. McClure, Dynamic recrystallization in friction-stir welding of aluminium alloy 1100, J. Mater. Sci. Lett., 16 (1997) 22, 1801–1803, doi:10.1023/A:1018556332357
20 T. Sakthivel, G. S. Sengar, J. Mukhopadhyay, Effect of welding speed on microstructure and mechanical properties of friction-stir-welded aluminum, Int. J. Adv. Manuf. Technol., 43 (2009) 5–6, 468–473, doi:10.1007/s00170-008-1727-7
21 J.-Q. Su, T. W. Nelson, C. J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys, Mater. Sci. Eng. A, 405 (2005) 1–2, 277–286, doi: 10.1016/j.msea.2005.06.009
22 Y. Sun, H. Fujii, Y. Takada, N. Tsuji, K. Nakata, K. Nogi, Effect of initial grain size on the joint properties of friction stir welded aluminum, Mater. Sci. Eng. A, 527 (2009) 1–2, 317–321, doi:10.1016/ j.msea.2009.07.071
23 T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S. W. Chung, Y. Takigawa, K. Higashi, Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy, Mater. Sci. Eng. A, 456 (2007) 1–2, 344–349, doi:10.1016/j.msea.2006.12.079
24 C. Sharma, D. K. Dwivedi, P. Kumar, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy, Mater. Des., 36 (2012), 379–390, doi:10.1016/j.matdes.2011.10.054
25 M. Sarkari Khorami, M. Kazeminezhad, A. H. Kokabi, Microstructure evolutions after friction stir welding of severely deformed aluminum sheets, Mater. Des., 40 (2012), 364–372, doi:10.1016/j.matdes.2012.04.016
26 H. Liu, H. Fujii, M. Maeda, K. Nogi, Heterogeneity of mechanical properties of friction stir welded joints of 1050-H24 aluminum alloy, J. Mater. Sci. Lett., 22 (2003) 6, 441–444, doi:10.1023/ A:1022959627794
27 M. S. Khorami, M. Kazeminezhad, A. H. Kokabi, Mechanical properties of severely plastic deformed aluminum sheets joined by friction stir welding, Mater. Sci. Eng. A, 543 (2012), 243–248, doi:10.1016/j.msea.2012.02.082
28 D. A. Hughes, N. Hansen, The microstructural origin of work hardening stages, Acta Mater., 148 (2018), 374–383, doi:10.1016/ j.actamat.2018.02.002
29 T. Narutani, J. Takamura, Grain-size strengthening in terms of dislocation density measured by resistivity, Acta Metall. Mater., 39 (1991) 8, 2037–2049, doi:10.1016/0956-7151(91)90173-X
30 M. Milad, N. Zreiba, F. Elhalouani, C. Baradai, The effect of cold work on structure and properties of AISI 304 stainless steel, J. Mater. Process. Technol., 203 (2008) 1–3, 80–85, doi:10.1016/j.jmatprotec. 2007.09.080
How to Cite
Ajabshir SZ, Kazeminezhad M, Kokabi AH. MANUFACTURING THINNED FRICTION-STIR WELDED 1050 ALUMINUM BY POST ROLLING: MICROSTRUCTURE AND MECHANICAL PROPERTIES. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):609–617. Available from: